Angeliki Louvi PhD

Associate Professor of Neurosurgery and of Neurobiology

Research Interests

Vertebrate neural development; Mechanisms of brain morphogenesis and pathogenesis; Microcephaly; Structural brain disorders; Cerebrovascular disease; Cerebral cavernous malformations; Notch signaling; CADASIL

Current Projects

  • Molecular Mechanisms of Primary Microcephaly
  • Functions of the Cerebral Cavernous Malformation 3 gene in neurovascular development and disease (with the Gunel lab, YSM)
  • Notch lineages in mammalian brain
  • Animal models of CADASIL, a cerebral ischemic small-vessel Notch disease (with the Artavanis-Tsakonas lab, Harvard Medical School)
  • Understanding hydrocephalus: the role of the choroid plexus

Research Summary

Our research is generally concerned with the study of molecular mechanisms governing the development of the mammalian brain. We are particularly interested in addressing how the perturbation of basic biological mechanisms leads to clinically significant brain pathologies. Working closely with other research groups in the Yale Program on Neurogenetics, we study the molecular and cellular mechanisms underlying neurodevelopmental disorders associated with specific genetic lesions. Insight into these questions will shed light on fundamental neurodevelopmental processes and provide information relevant for the design of therapeutic approaches.

Extensive Research Description

Molecular Basis of Brain Disorders

  • Cerebral Cavernous Malformations (CCM). We are investigating the biology of Ccm3, one of three genes implicated in the pathogenesis of CCM, a monogenic cerebrovascular disorder. We have generated a mouse model that develops vascular lesions highly similar to human cavernomas; its study has led to the identification of cell autonomous as well as cell non-autonomous functions of CCM3 in vascular and neural development, and has unraveled an important role of this protein in the neurovascular unit.
  1. Tanriover et al. (2008). PDCD10, the gene mutated in Cerebral Cavernous Malformation 3 (CCM3) is expressed in the neurovascular unit. Neurosurgery 62, 930-938.
  2. Chen et al. (2009). Apoptotic functions of PDCD10, the gene mutated in cerebral cavernous malformation 3. Stroke 40, 1474-1481.
  3. Louvi et al. (2011). Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc. Natl. Acad. Sci. USA. 108, 3737-3742.
  4. Oztürk, Louvi, and Günel (2011). Genetics of Cerebral Cavernous Malformations. In Youmans Neurological Surgery, 6th edition, ed. H. R. Winn, Elsevier.
  5. Louvi et al. (2014). Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development, 141, 1404-1415.
  • Disorders of Cortical Development. Several novel genes implicated in human cortical development have been identified in the Günel lab using genetic analyses and next generation sequencing. We are using in vitro and in vivo approaches to examine the biology of these genes and are characterizing relevant animal models.
  1. Bilguvar, Ozturk, et al. (2010). Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207-210.
  2. Barak, Kwan, et al. (2011). Recessive laminin g3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590-594.
  3. Bilguvar, et al. (2013) Recessive loss of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration.Proc. Natl. Acad. Sci. USA, 110(9):3489-94.



Morphogenesis of Brain Barriers

Blood-tissue barriers are the major interfaces between the central nervous system and peripheral circulation. Barriers are found in the endothelium of the brain vasculature (the blood-brain barrier) and the epithelium of the choroid plexus (the blood-CSF barrier). We are studying the cellular and molecular mechanisms responsible for the establishment of brain barriers during embryogenesis using the mouse as our main experimental system. Our specific goal is to gain insight into the blood-CSF barrier by embryologic, genetic, and molecular analyses of the choroid plexus while exploring its known relationship to the development of hydrocephalus, a common neurodevelopmental problem that requires surgical intervention.


Selected Publications

  • Louvi, A.*, Nishimura, S. and Gunel, M. (2014) Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development, 141, 1404-1415.
  • Louvi, A. and Artavanis-Tsakonas, S. (2012). Notch and disease: A growing field. Semin. Cell. Dev. Biol. 23, 473-480.
  • Louvi, A. and Grove, E.A. (2011). Cilia in the CNS: the Quiet Organelle Takes Center Stage. Neuron 69, 1046-1060.
  • Louvi, A.*, Chen, L., Two, A. M., Zhang, H., Min, W., and Günel, M.* (2011). Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc. Natl. Acad. Sci. USA. 108, 3737-3742.
  • Arboleda-Velasquez, J., Manent, J., Lee J. H., Tikka, S., Ospina, C., Vanderburg, C. R., Frosch, M.P., Rodriguez-Falcon, M., Villen, J., Gygi, S., Lopera, F., Kalimo, H., Moskowitz, M. A., Ayata, C., Louvi, A.*, and Artavanis-Tsakonas, S.* (2011). Hypomorphic Notch 3 alleles link Notch signalling to ischemic cerebral small-vessel disease. Proc. Natl. Acad. Sci. USA. 108, E128-135.
  • Barak, T.*, Kwan, K. Y.*, Louvi, A., Demirbilek, V., Saygi, S., Tüysüz, B., Choi, M., Boyaci, H., Doerschner, K., Zhu, Y., Kaymakçalan, H., Yilmaz, S., Bakircioglu, M., Çaglayan, A. O., Öztürk, A. K., Yasuno, K., Brunken, W. J., Atalar, E., Yalçinkaya, C., Dinçer, A., Bronen, R. A., Mane, S., Özçelik, T., Lifton, R. P., Šestan, N., Bilgüvar, K., and Günel, M. (2011). Recessive laminin ?3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590-594.
  • Bilgüvar, K*., Oztürk, A. K.*, Louvi, A., Kwan, K. Y., Choi, M., Tatli, B., Yalnizoglu, D., Tüysüz, B., Caglayan, A. O., Gökben, S., Kaymakçalan, H., Barak, T., Bakircioglu, M., Yasuno, K., Ho, W., Sanders, S., Zhu, Y., Yilmaz, S., Dinçer, A., Johnson, M. H., Bronen, R. A., Koçer, N., Per, H., Mane, S., Pamir, M. N., Yalçinkaya, C., Kumandas, S., Topçu, M., Ozmen, M., Sestan, N., Lifton, R. P., State, M. W., Günel, M. (2010). Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467:207-210.
  • Stillman, A.*, Krsnik, Z.*, Sun, J., Rasin, M.-R., State, M. W., Sestan, N., and Louvi, A. (2009). Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J. Comp. Neurol., 513:21-37.
  • Louvi A., Artavanis-Tsakonas S. (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci. 7:93-102.

Edit Profile