WEBVTT

NOTE duration: "00:20:09.0800000"

NOTE recognizability:0.894

NOTE language:en-us

NOTE Confidence: 0.88485608

00:00:00.000 --> 00:00:02.240 I'm going to introduce our next speaker,

NOTE Confidence: 0.88485608

00:00:02.240 --> 00:00:04.150 So Doctor Murray Cirilli earned

NOTE Confidence: 0.88485608

 $00:00:04.150 \longrightarrow 00:00:07.190$ her MD and PhD from the University

NOTE Confidence: 0.88485608

00:00:07.190 --> 00:00:09.092 of Amsterdam, the Netherlands,

NOTE Confidence: 0.88485608

 $00:00:09.092 \longrightarrow 00:00:11.648$ and is an endocrinologist at the

NOTE Confidence: 0.88485608

 $00:00:11.648 \dashrightarrow 00:00:13.480$ Amsterdam University Medical Center.

NOTE Confidence: 0.88485608

00:00:13.480 --> 00:00:16.920 In 2019 she became the Professor of Medicine,

NOTE Confidence: 0.88485608

 $00{:}00{:}16.920 \dashrightarrow 00{:}00{:}18.412$ Nutrition and Energy Metabolism

NOTE Confidence: 0.88485608

00:00:18.412 --> 00:00:20.277 at the University of Amsterdam,

NOTE Confidence: 0.88485608

 $00:00:20.280 \longrightarrow 00:00:23.640$ and in 2023 she moved to Yale University,

NOTE Confidence: 0.88485608

 $00{:}00{:}23.640 \dashrightarrow 00{:}00{:}25.719$ while she was promoted to Professor of

NOTE Confidence: 0.88485608

 $00:00:25.719 \longrightarrow 00:00:28.039$ Medicine in the section of Endocrinology.

NOTE Confidence: 0.88485608

00:00:28.040 --> 00:00:30.500 Her research interests lie in the

 $00:00:30.500 \longrightarrow 00:00:32.351$ metabolic consequences of obesity and

NOTE Confidence: 0.88485608

 $00:00:32.351 \longrightarrow 00:00:34.839$ the role of the brain in weight gain.

NOTE Confidence: 0.88485608

00:00:34.840 --> 00:00:36.280 Doctor Sohaili,

NOTE Confidence: 0.807277218888889

 $00:00:44.960 \longrightarrow 00:00:47.045$ thank you Anya and for

NOTE Confidence: 0.807277218888889

 $00:00:47.045 \longrightarrow 00:00:48.713$ organizing this great initiative.

NOTE Confidence: 0.807277218888889

 $00:00:48.720 \longrightarrow 00:00:51.152$ So I'm going to talk mostly

NOTE Confidence: 0.807277218888889

00:00:51.152 --> 00:00:54.502 data in humans and data on

NOTE Confidence: 0.807277218888889

 $00:00:54.502 \longrightarrow 00:00:57.200$ the on the human brain. So,

NOTE Confidence: 0.8079779

 $00:00:59.280 \longrightarrow 00:01:04.440$ so the the, the prevalence of of

NOTE Confidence: 0.8079779

 $00:01:04.440 \longrightarrow 00:01:08.140$ obesity really parallels the the

NOTE Confidence: 0.8079779

 $00{:}01{:}08.140 \dashrightarrow 00{:}01{:}11.440$ increase in availability of food.

NOTE Confidence: 0.8079779

 $00:01:11.440 \longrightarrow 00:01:12.700$ So apparently when there's

NOTE Confidence: 0.8079779

00:01:12.700 --> 00:01:14.275 a lot of food around,

NOTE Confidence: 0.8079779

 $00:01:14.280 \longrightarrow 00:01:18.277$ people eat more than they actually need.

NOTE Confidence: 0.8079779

 $00:01:18.280 \longrightarrow 00:01:21.213$ So the question really is why do

NOTE Confidence: 0.8079779

00:01:21.213 --> 00:01:24.119 we eat beyond homeostatic need?

00:01:24.120 --> 00:01:27.708 And I think that answer mostly

NOTE Confidence: 0.8079779

 $00:01:27.708 \longrightarrow 00:01:31.476$ can be found in the brain.

NOTE Confidence: 0.8079779

00:01:31.480 --> 00:01:35.645 So to very briefly summarize the food

NOTE Confidence: 0.8079779

00:01:35.645 --> 00:01:38.224 intake regulation so that you know

NOTE Confidence: 0.8079779

 $00{:}01{:}38.224 \dashrightarrow 00{:}01{:}40.826$ you understand more of what we've been

NOTE Confidence: 0.8079779

 $00:01:40.826 \longrightarrow 00:01:43.076$ doing with neuroimaging in humans,

NOTE Confidence: 0.8079779

00:01:43.080 -> 00:01:45.556 I want to just briefly guide you

NOTE Confidence: 0.8079779

 $00:01:45.556 \longrightarrow 00:01:47.146$ through this very complex regulation

NOTE Confidence: 0.8079779

 $00:01:47.146 \longrightarrow 00:01:49.039$ and this is very simplified.

NOTE Confidence: 0.8079779

 $00:01:49.040 \longrightarrow 00:01:53.988$ So there are many signals coming from

NOTE Confidence: 0.8079779

00:01:53.988 --> 00:01:57.516 the body, including the gut peptides,

NOTE Confidence: 0.8079779

00:01:57.520 --> 00:01:59.216 GOP, 1G, IPCCK, etcetera,

NOTE Confidence: 0.8079779

 $00:01:59.216 \longrightarrow 00:02:02.368$ ghrelin that inform the brain about food

NOTE Confidence: 0.8079779

 $00:02:02:368 \longrightarrow 00:02:06.272$ in the stomach and intestines or no food.

NOTE Confidence: 0.8079779

00:02:06.280 --> 00:02:09.320 But other factors like nutrients,

00:02:09.320 --> 00:02:09.791 glucose,

NOTE Confidence: 0.8079779

 $00{:}02{:}09.791 \dashrightarrow 00{:}02{:}12.146$ hormones like insulin and leptin

NOTE Confidence: 0.8079779

00:02:12.146 --> 00:02:14.536 from adipose tissue also inform

NOTE Confidence: 0.8079779

 $00:02:14.536 \longrightarrow 00:02:16.676$ different areas in the brain,

NOTE Confidence: 0.8079779

 $00:02:16.680 \longrightarrow 00:02:18.160$ as you can see here.

NOTE Confidence: 0.8079779

 $00:02:18.160 \longrightarrow 00:02:20.456$ And then all these signals are put

NOTE Confidence: 0.8079779

 $00{:}02{:}20.456 \dashrightarrow 00{:}02{:}22.830$ together and then that leads to a

NOTE Confidence: 0.8079779

 $00:02:22.830 \longrightarrow 00:02:24.480$ feeding or no feeding response.

NOTE Confidence: 0.966431775

 $00{:}02{:}27.440 \dashrightarrow 00{:}02{:}29.351$ To make it even more simple to

NOTE Confidence: 0.966431775

 $00:02:29.351 \longrightarrow 00:02:31.640$ be able to study this in humans,

NOTE Confidence: 0.966431775

 $00:02:31.640 \longrightarrow 00:02:35.120$ we had to simplify the model even further.

NOTE Confidence: 0.966431775

 $00:02:35.120 \longrightarrow 00:02:37.528$ So we defied, and this

NOTE Confidence: 0.966431775

 $00:02:37.528 \longrightarrow 00:02:38.895$ is a little artificial,

NOTE Confidence: 0.966431775

 $00:02:38.895 \longrightarrow 00:02:41.625$ but the food intake regulation

NOTE Confidence: 0.966431775

 $00:02:41.625 \longrightarrow 00:02:44.378$ systems in a homeostatic part and

NOTE Confidence: 0.966431775

 $00:02:44.378 \longrightarrow 00:02:47.000$ a hedonic part or reward part.

 $00{:}02{:}47.000 \dashrightarrow 00{:}02{:}49.632$ Of course there's a lot of overlap

NOTE Confidence: 0.966431775

 $00{:}02{:}49.632 \dashrightarrow 00{:}02{:}52.218$ between these areas and there are

NOTE Confidence: 0.966431775

 $00:02:52.218 \longrightarrow 00:02:53.676$ many neurotransmitters involved.

NOTE Confidence: 0.966431775

 $00:02:53.680 \longrightarrow 00:02:55.505$ One of the major neurotransmitters

NOTE Confidence: 0.966431775

 $00:02:55.505 \longrightarrow 00:02:58.387$ in the reward system in the brain is

NOTE Confidence: 0.966431775

 $00:02:58.387 \longrightarrow 00:03:01.030$ dopamine and one of the neurotransmitters

NOTE Confidence: 0.966431775

 $00:03:01.030 \longrightarrow 00:03:02.878$ in the homeostatic system,

NOTE Confidence: 0.966431775

 $00:03:02.880 \longrightarrow 00:03:05.538$ which lies mostly in life settlements

NOTE Confidence: 0.966431775

 $00:03:05.538 \longrightarrow 00:03:08.440$ in the brain stem is serotonin.

NOTE Confidence: 0.966431775

 $00:03:08.440 \longrightarrow 00:03:10.474$ So for the sake of time I'm just going

NOTE Confidence: 0.966431775

00:03:10.474 --> 00:03:12.709 to very briefly touch upon our findings

NOTE Confidence: 0.966431775

 $00:03:12.709 \longrightarrow 00:03:14.398$ on disturbances in the serotonin

NOTE Confidence: 0.966431775

 $00:03:14.398 \longrightarrow 00:03:16.998$ system in the brain in people with obesity.

NOTE Confidence: 0.966431775

 $00:03:17.000 \longrightarrow 00:03:19.480$ And this is by please don't read this,

NOTE Confidence: 0.966431775

 $00:03:19.480 \longrightarrow 00:03:22.042$ but this is just to show you

00:03:22.042 --> 00:03:24.198 how difficult it is to study,

NOTE Confidence: 0.966431775

 $00:03:24.200 \longrightarrow 00:03:27.080$ in this case, serotonin,

NOTE Confidence: 0.966431775

 $00:03:27.080 \longrightarrow 00:03:28.450$ serotoninergic regulation of

NOTE Confidence: 0.966431775

 $00:03:28.450 \longrightarrow 00:03:30.075$ food intake by the brain.

NOTE Confidence: 0.966431775

 $00:03:30.080 \longrightarrow 00:03:32.304$ But here you can see we just summarized

NOTE Confidence: 0.966431775

 $00:03:32.304 \longrightarrow 00:03:34.322$ all the literature showing all the

NOTE Confidence: 0.966431775

 $00:03:34.322 \longrightarrow 00:03:36.840$ brain areas and within the brain areas,

NOTE Confidence: 0.966431775

 $00{:}03{:}36.840 \dashrightarrow 00{:}03{:}39.342$ the nuclei that use seroton in for

NOTE Confidence: 0.966431775

 $00:03:39.342 \longrightarrow 00:03:41.560$ signalling to modulate food intake.

NOTE Confidence: 0.966431775

00:03:41.560 --> 00:03:44.864 So you can imagine it's really hard to

NOTE Confidence: 0.966431775

 $00:03:44.864 \longrightarrow 00:03:47.674$ study and therefore we need all the the,

NOTE Confidence: 0.966431775

 $00:03:47.680 \longrightarrow 00:03:49.004$ the, the animal data.

NOTE Confidence: 0.966431775

 $00:03:49.004 \longrightarrow 00:03:51.789$ So this is just to summarize what we've

NOTE Confidence: 0.966431775

 $00{:}03{:}51.789 \dashrightarrow 00{:}03{:}53.740$ been seeing in the seroton ergic system.

NOTE Confidence: 0.966431775

00:03:53.740 --> 00:03:56.000 And this is small, but it doesn't matter,

NOTE Confidence: 0.966431775

 $00:03:56.000 \longrightarrow 00:03:57.040$ it's just one slide.

 $00:03:57.040 \longrightarrow 00:03:59.910$ So when we looked at postmortem hypothalamic

NOTE Confidence: 0.966431775

 $00:03:59.910 \longrightarrow 00:04:02.267$ tissue in people with a healthy

NOTE Confidence: 0.966431775

00:04:02.267 --> 00:04:04.717 weight and people with ABMI above 25,

NOTE Confidence: 0.966431775

 $00:04:04.720 \longrightarrow 00:04:07.440$ we found lower expression

NOTE Confidence: 0.966431775

 $00:04:07.440 \longrightarrow 00:04:09.480$ of serotonin transporters.

NOTE Confidence: 0.966431775

 $00:04:09.480 \longrightarrow 00:04:11.892$ And to verify that this was

NOTE Confidence: 0.966431775

00:04:11.892 --> 00:04:14.240 not a just postmortem finding,

NOTE Confidence: 0.966431775

 $00:04:14.240 \longrightarrow 00:04:16.088$ we also validate this with a

NOTE Confidence: 0.966431775

 $00:04:16.088 \longrightarrow 00:04:18.834$ SPECT scan in vivo where we found

NOTE Confidence: 0.966431775

 $00{:}04{:}18.834 \dashrightarrow 00{:}04{:}20.277$ lower hypothalamic serotonin,

NOTE Confidence: 0.966431775

00:04:20.280 --> 00:04:22.173 serotonin transporter binding

NOTE Confidence: 0.966431775

 $00:04:22.173 \longrightarrow 00:04:25.959$ in people with BMI over 30.

NOTE Confidence: 0.966431775

 $00:04:25.960 \longrightarrow 00:04:29.232$ We also studied the the response of

NOTE Confidence: 0.966431775

 $00:04:29.232 \longrightarrow 00:04:32.002$ the search energic system during fasting.

NOTE Confidence: 0.966431775

 $00:04:32.002 \longrightarrow 00:04:34.168$ So people were either fasting 12

 $00:04:34.168 \longrightarrow 00:04:37.646$ or 24 hours and then we measured

NOTE Confidence: 0.966431775

 $00{:}04{:}37.646 {\:\dashrightarrow\:} 00{:}04{:}39.254$ hypothalamic serotonin transporter

NOTE Confidence: 0.966431775

00:04:39.254 --> 00:04:41.400 availability using the SPECT scan.

NOTE Confidence: 0.966431775

 $00:04:41.400 \longrightarrow 00:04:43.360$ And we found that in people with a

NOTE Confidence: 0.966431775

 $00:04:43.360 \longrightarrow 00:04:45.103$ healthy weight there was an increase

NOTE Confidence: 0.966431775

 $00:04:45.103 \longrightarrow 00:04:46.903$ in seroton in transporters and this was

NOTE Confidence: 0.966431775

00:04:46.958 --> 00:04:48.757 not the case in people with obesity.

NOTE Confidence: 0.966431775

00:04:48.760 --> 00:04:51.010 So apparently the fasting response

NOTE Confidence: 0.966431775

00:04:51.010 --> 00:04:53.260 in terms of certainergic fasting

NOTE Confidence: 0.966431775

00:04:53.330 --> 00:04:56.011 response in the brain is different in

NOTE Confidence: 0.966431775

 $00{:}04{:}56.011 \dashrightarrow 00{:}04{:}58.876$ people with obesity and this might be

NOTE Confidence: 0.966431775

 $00:04:58.876 \longrightarrow 00:05:01.021$ related to differences in circulating

NOTE Confidence: 0.966431775

 $00:05:01.021 \longrightarrow 00:05:03.838$ factors like free fatty acids and insulin.

NOTE Confidence: 0.966431775

 $00:05:03.840 \longrightarrow 00:05:06.216$ And finally we also did a study where

NOTE Confidence: 0.966431775

 $00:05:06.216 \longrightarrow 00:05:08.373$ we did an overfeeding study where

NOTE Confidence: 0.966431775

00:05:08.373 --> 00:05:11.080 we fed people with a healthy weight

 $00:05:11.080 \longrightarrow 00:05:14.110$ snacks in between meals and they

NOTE Confidence: 0.966431775

 $00:05:14.110 \longrightarrow 00:05:17.672$ gained like 5 or 6 kilos and they

NOTE Confidence: 0.966431775

 $00{:}05{:}17.672 \dashrightarrow 00{:}05{:}20.164$ were totally fit leaned man in this

NOTE Confidence: 0.966431775

 $00:05:20.164 \longrightarrow 00:05:22.746$ case and we were able to replicate

NOTE Confidence: 0.966431775

 $00:05:22.746 \longrightarrow 00:05:25.240$ the findings in people with obesity.

NOTE Confidence: 0.966431775

 $00:05:25.240 \longrightarrow 00:05:27.767$ So we think that overfeeding leads to

NOTE Confidence: 0.966431775

 $00:05:27.767 \longrightarrow 00:05:29.997$ a decrease in serotonin transporters

NOTE Confidence: 0.966431775

 $00:05:29.997 \longrightarrow 00:05:32.687$ and serotonin signalling and that

NOTE Confidence: 0.966431775

 $00:05:32.687 \longrightarrow 00:05:36.340$ might contribute to overeating and

NOTE Confidence: 0.966431775

 $00{:}05{:}36.340 \dashrightarrow 00{:}05{:}40.960$ obesity but moving on to to dopamine.

NOTE Confidence: 0.934251430909091

 $00:05:43.600 \longrightarrow 00:05:45.232$ So dopamine is a really the

NOTE Confidence: 0.934251430909091

00:05:45.232 --> 00:05:46.640 whole dopamine system is very,

NOTE Confidence: 0.934251430909091

 $00:05:46.640 \longrightarrow 00:05:50.160$ very important in reward learning,

NOTE Confidence: 0.934251430909091

 $00{:}05{:}50.160 \to 00{:}05{:}53.538$ reward processing and hedonic part and

NOTE Confidence: 0.934251430909091

 $00:05:53.538 \longrightarrow 00:05:56.960$ the motivational part of food intake.

 $00:05:56.960 \longrightarrow 00:06:00.200$ So we are able to image dopamine receptor

NOTE Confidence: 0.934251430909091

 $00{:}06{:}00.200 \dashrightarrow 00{:}06{:}03.164$ bind or receptors by using a radio

NOTE Confidence: 0.934251430909091

 $00:06:03.164 \longrightarrow 00:06:06.479$ tracer and in this case we used SPECT.

NOTE Confidence: 0.934251430909091

 $00:06:06.480 \longrightarrow 00:06:08.255$ In the future we're probably

NOTE Confidence: 0.934251430909091

 $00:06:08.255 \longrightarrow 00:06:09.675$ together with nuclear medicine.

NOTE Confidence: 0.934251430909091

 $00:06:09.680 \longrightarrow 00:06:11.528$ We will use PET scan because

NOTE Confidence: 0.934251430909091

 $00:06:11.528 \longrightarrow 00:06:13.680$ it has a better sensitivity.

NOTE Confidence: 0.934251430909091

 $00:06:13.680 \longrightarrow 00:06:14.760$ But in any case,

NOTE Confidence: 0.934251430909091

 $00:06:14.760 \longrightarrow 00:06:16.920$ we found that in people with obesity,

NOTE Confidence: 0.934251430909091

 $00:06:16.920 \longrightarrow 00:06:18.840$ these were all women,

NOTE Confidence: 0.934251430909091

 $00:06:18.840 \longrightarrow 00:06:21.720$ but there were lower dopamine receptor,

NOTE Confidence: 0.934251430909091

 $00:06:21.720 \longrightarrow 00:06:24.317$ there was a lower dopamine receptor binding.

NOTE Confidence: 0.934251430909091

 $00:06:24.320 \longrightarrow 00:06:26.196$ We don't know at this point whether

NOTE Confidence: 0.934251430909091

 $00:06:26.196 \longrightarrow 00:06:28.710$ there was a lower dopamine receptor

NOTE Confidence: 0.934251430909091

 $00:06:28.710 \longrightarrow 00:06:31.560$ expression or more dopamine release.

NOTE Confidence: 0.934251430909091

 $00:06:31.560 \longrightarrow 00:06:32.640$ But in any case,

 $00:06:32.640 \longrightarrow 00:06:33.990$ we found lower dopamine receptor

NOTE Confidence: 0.934251430909091

 $00:06:33.990 \longrightarrow 00:06:35.398$ binding in people with obesity.

NOTE Confidence: 0.934251430909091

 $00{:}06{:}35.400 \dashrightarrow 00{:}06{:}37.080$ So there seems to be something

NOTE Confidence: 0.934251430909091

 $00:06:37.080 \longrightarrow 00:06:38.640$ wrong in the dopamine system.

NOTE Confidence: 0.934251430909091

 $00:06:38.640 \longrightarrow 00:06:40.728$ So we were wondering is this

NOTE Confidence: 0.934251430909091

 $00:06:40.728 \longrightarrow 00:06:42.120$ reversed by weight loss?

NOTE Confidence: 0.934251430909091

 $00:06:42.120 \longrightarrow 00:06:45.879$ So the same women with obesity underwent

NOTE Confidence: 0.934251430909091

 $00{:}06{:}45.879 \dashrightarrow 00{:}06{:}48.420$ beartic surgery and six weeks after

NOTE Confidence: 0.934251430909091

 $00{:}06{:}48.420 \dashrightarrow 00{:}06{:}50.245$ Bretic surgery where they already

NOTE Confidence: 0.934251430909091

 $00{:}06{:}50.245 \dashrightarrow 00{:}06{:}52.257$ were in a negative energy balance

NOTE Confidence: 0.934251430909091

 $00:06:52.257 \longrightarrow 00:06:54.719$ for a couple of weeks or six weeks.

NOTE Confidence: 0.934251430909091

00:06:54.720 --> 00:06:56.640 We found no reversibility,

NOTE Confidence: 0.934251430909091

 $00{:}06{:}56.640 {\:\dashrightarrow\:} 00{:}06{:}59.520$ so there was no increase in

NOTE Confidence: 0.934251430909091

 $00{:}06{:}59.609 \dashrightarrow 00{:}07{:}01.919$ dopamine receptor binding.

NOTE Confidence: 0.934251430909091

 $00:07:01.920 \longrightarrow 00:07:03.586$ We then studied them again about a

 $00:07:03.586 \longrightarrow 00:07:05.699$ year and a half or two years after

NOTE Confidence: 0.934251430909091

 $00{:}07{:}05.699 \dashrightarrow 00{:}07{:}07.707$ bretic surgery and there we found that

NOTE Confidence: 0.934251430909091

 $00{:}07{:}07.707 \dashrightarrow 00{:}07{:}09.513$ there was a slight but significant

NOTE Confidence: 0.934251430909091

 $00:07:09.513 \longrightarrow 00:07:11.359$ increase in dopamine receptor binding.

NOTE Confidence: 0.934251430909091

 $00:07:11.359 \longrightarrow 00:07:15.080$ So we think it might be partially reversible.

NOTE Confidence: 0.934251430909091

00:07:15.080 --> 00:07:17.960 It was still lower as you can see

NOTE Confidence: 0.934251430909091

00:07:17.960 --> 00:07:19.880 here compared to the lean controls,

NOTE Confidence: 0.934251430909091

 $00{:}07{:}19.880 \dashrightarrow 00{:}07{:}21.998$ but BMI was also still higher.

NOTE Confidence: 0.934251430909091

 $00:07:22.000 \longrightarrow 00:07:23.600$ But having said that,

NOTE Confidence: 0.934251430909091

 $00:07:23.600 \longrightarrow 00:07:25.200$ we of course correlated,

NOTE Confidence: 0.934251430909091

 $00:07:25.200 \longrightarrow 00:07:27.069$ We wanted to know what are the

NOTE Confidence: 0.934251430909091

 $00:07:27.069 \longrightarrow 00:07:29.122$ determinants of an increase in dopamine

NOTE Confidence: 0.934251430909091

 $00:07:29.122 \longrightarrow 00:07:30.912$ receptor binding in these women.

NOTE Confidence: 0.934251430909091

 $00:07:30.912 \longrightarrow 00:07:32.652$ And this was not correlated

NOTE Confidence: 0.934251430909091

 $00:07:32.652 \longrightarrow 00:07:34.357$ to the decrease in BMI.

NOTE Confidence: 0.973856064

 $00:07:36.400 \longrightarrow 00:07:40.130$ And actually when we put data together

00:07:40.130 --> 00:07:43.155 from published trials in humans,

NOTE Confidence: 0.973856064

 $00:07:43.160 \longrightarrow 00:07:46.233$ we found that indeed there is no

NOTE Confidence: 0.973856064

00:07:46.233 --> 00:07:48.137 linear correlation between BMI

NOTE Confidence: 0.973856064

00:07:48.137 --> 00:07:50.177 and dopamine receptor binding

NOTE Confidence: 0.973856064

 $00{:}07{:}50.177 \dashrightarrow 00{:}07{:}51.790$ using patents, SPECT scans.

NOTE Confidence: 0.973856064

 $00:07:51.790 \longrightarrow 00:07:54.150$ And it seems to be that there first

NOTE Confidence: 0.973856064

 $00:07:54.219 \longrightarrow 00:07:56.557$ is an increase followed by a decrease.

NOTE Confidence: 0.973856064

 $00:07:56.560 \longrightarrow 00:07:58.448$ And this is also what we found in

NOTE Confidence: 0.973856064

 $00:07:58.448 \longrightarrow 00:07:59.440$ our own studies.

NOTE Confidence: 0.973856064

 $00:07:59.440 \longrightarrow 00:08:00.680$ This is still unpublished.

NOTE Confidence: 0.911124308

 $00:08:03.280 \longrightarrow 00:08:05.470$ So we were thinking what other

NOTE Confidence: 0.911124308

 $00:08:05.470 \longrightarrow 00:08:07.356$ determinants then of lower dopamine

NOTE Confidence: 0.911124308

 $00{:}08{:}07.356 \dashrightarrow 00{:}08{:}09.474$ receptor binding and we think part

NOTE Confidence: 0.911124308

 $00:08:09.474 \longrightarrow 00:08:12.085$ of it might be explained by eating

NOTE Confidence: 0.911124308

 $00:08:12.085 \longrightarrow 00:08:14.317$ patterns and timing of food intake.

00:08:14.320 --> 00:08:15.336 And as you know,

NOTE Confidence: 0.911124308

 $00:08:15.336 \longrightarrow 00:08:18.000$ a lot of people get a lot of calories,

NOTE Confidence: 0.911124308

00:08:18.000 --> 00:08:20.320 their daily calories from snacking.

NOTE Confidence: 0.929683228571428

 $00:08:23.040 \longrightarrow 00:08:24.636$ So there was a very elegant study.

NOTE Confidence: 0.929683228571428

 $00:08:24.640 \longrightarrow 00:08:27.106$ As you know, there is a lot of interest

NOTE Confidence: 0.929683228571428

00:08:27.106 --> 00:08:29.275 in intermittent fasting and time

NOTE Confidence: 0.929683228571428

 $00:08:29.275 \longrightarrow 00:08:31.560$ restricted eating to lose weight.

NOTE Confidence: 0.929683228571428

 $00:08:31.560 \longrightarrow 00:08:33.443$ And this is a very nice study

NOTE Confidence: 0.929683228571428

 $00:08:33.443 \longrightarrow 00:08:35.296$ where they looked at total energy

NOTE Confidence: 0.929683228571428

00:08:35.296 --> 00:08:36.931 expenditure in people that would

NOTE Confidence: 0.929683228571428

 $00{:}08{:}36.931 \dashrightarrow 00{:}08{:}39.020$ eat most of their calories in the

NOTE Confidence: 0.929683228571428

 $00{:}08{:}39.020 \dashrightarrow 00{:}08{:}42.152$ morning or later in the day during a

NOTE Confidence: 0.929683228571428

 $00:08:42.152 \longrightarrow 00:08:45.112$ hypocaloric diet and they found no

NOTE Confidence: 0.929683228571428

 $00:08:45.112 \longrightarrow 00:08:47.352$ difference in total energy expenditure.

NOTE Confidence: 0.929683228571428

 $00:08:47.360 \longrightarrow 00:08:50.078$ But what they did find is that there was,

NOTE Confidence: 0.929683228571428

 $00{:}08{:}50.080 \dashrightarrow 00{:}08{:}52.195$ there were reduced feelings of

00:08:52.195 --> 00:08:55.179 hunger in the people that ate most

NOTE Confidence: 0.929683228571428

 $00:08:55.179 \longrightarrow 00:08:57.555$ of their calories in the morning.

NOTE Confidence: 0.929683228571428

00:08:57.560 --> 00:09:01.513 And that fits really nicely with a study

NOTE Confidence: 0.929683228571428

00:09:01.513 --> 00:09:06.200 that we did earlier in Man with Obesity

NOTE Confidence: 0.929683228571428

 $00:09:06.200 \longrightarrow 00:09:10.080$ that we put on a timed hypocaloric diet.

NOTE Confidence: 0.929683228571428

00:09:10.080 --> 00:09:13.030 And So what we did is they got a pretty

NOTE Confidence: 0.929683228571428

 $00:09:13.105 \longrightarrow 00:09:15.463$ strict I have to say hypocaloric

NOTE Confidence: 0.929683228571428

 $00{:}09{:}15.463 \dashrightarrow 00{:}09{:}18.077$ diet and they would eat most of

NOTE Confidence: 0.929683228571428

 $00:09:18.077 \longrightarrow 00:09:20.602$ their most of their calories in the

NOTE Confidence: 0.929683228571428

 $00:09:20.602 \longrightarrow 00:09:23.557$ morning or in the OR in the evening.

NOTE Confidence: 0.929683228571428

 $00:09:23.560 \longrightarrow 00:09:25.426$ And while the calories at lunch

NOTE Confidence: 0.929683228571428

 $00:09:25.426 \longrightarrow 00:09:26.359$ were the same,

NOTE Confidence: 0.929683228571428

 $00:09:26.360 \longrightarrow 00:09:29.123$ So first we looked at so the per study

NOTE Confidence: 0.929683228571428

 $00:09:29.123 \longrightarrow 00:09:31.958$ design they lost the same amount of weight.

NOTE Confidence: 0.929683228571428

 $00:09:31.960 \longrightarrow 00:09:33.796$ And 1st we looked at metabolic

 $00:09:33.796 \longrightarrow 00:09:35.740$ outcomes and it really didn't matter

NOTE Confidence: 0.929683228571428

 $00:09:35.740 \longrightarrow 00:09:38.043$ whether they would eat most of the

NOTE Confidence: 0.929683228571428

 $00:09:38.043 \longrightarrow 00:09:39.880$ calories in the morning or evening

NOTE Confidence: 0.929683228571428

 $00:09:39.880 \longrightarrow 00:09:42.400$ in terms of improvement in insulin

NOTE Confidence: 0.929683228571428

 $00:09:42.400 \longrightarrow 00:09:45.078$ sensitivity in the liver or in muscle.

NOTE Confidence: 0.929683228571428

 $00:09:45.080 \longrightarrow 00:09:48.666$ And also liver fat was was really

NOTE Confidence: 0.929683228571428

 $00:09:48.666 \longrightarrow 00:09:50.318$ decreased in both conditions.

NOTE Confidence: 0.929683228571428

 $00:09:50.320 \longrightarrow 00:09:52.280$ But when we then looked at the

NOTE Confidence: 0.929683228571428

 $00:09:52.280 \longrightarrow 00:09:54.199$ brain there were some differences.

NOTE Confidence: 0.929683228571428

 $00:09:54.200 \longrightarrow 00:09:57.602$ So the man that ate most of the calories

NOTE Confidence: 0.929683228571428

 $00:09:57.602 \longrightarrow 00:10:01.614$ in the morning during weight loss had an

NOTE Confidence: 0.929683228571428

 $00:10:01.614 \longrightarrow 00:10:05.920$ increase an increase dopamine transporters.

NOTE Confidence: 0.929683228571428 00:10:05.920 --> 00:10:06.407 Sorry,

NOTE Confidence: 0.929683228571428

 $00:10:06.407 \longrightarrow 00:10:08.355$ a dopamine transporter availability

NOTE Confidence: 0.929683228571428

 $00:10:08.355 \longrightarrow 00:10:11.274$ in the street and using SPECT

NOTE Confidence: 0.929683228571428

 $00:10:11.274 \longrightarrow 00:10:12.586$ scans while the people,

 $00:10:12.586 \longrightarrow 00:10:14.700$ the man in the dinner group that

NOTE Confidence: 0.929683228571428

00:10:14.764 --> 00:10:16.878 at most of the calories at dinner,

NOTE Confidence: 0.929683228571428

 $00:10:16.880 \longrightarrow 00:10:20.114$ they they had a decrease and this

NOTE Confidence: 0.929683228571428

 $00:10:20.114 \longrightarrow 00:10:22.520$ differential response was significant.

NOTE Confidence: 0.929683228571428 00:10:22.520 --> 00:10:23.262 So there. NOTE Confidence: 0.929683228571428

 $00:10:23.262 \longrightarrow 00:10:25.488$ So timing of food intake seems

NOTE Confidence: 0.929683228571428

 $00:10:25.488 \longrightarrow 00:10:27.798$ to affect the dopamine system.

NOTE Confidence: 0.92968322857142800:10:27.800 --> 00:10:28.462 And also,

NOTE Confidence: 0.929683228571428

 $00:10:28.462 \longrightarrow 00:10:30.117$ and this is still unpublished,

NOTE Confidence: 0.929683228571428

 $00:10:30.120 \longrightarrow 00:10:31.944$ when we put them in the in the

NOTE Confidence: 0.929683228571428

 $00:10:31.944 \longrightarrow 00:10:33.853$ MRI and scanned them and showed

NOTE Confidence: 0.929683228571428

 $00:10:33.853 \longrightarrow 00:10:35.237$ them pictures of food,

NOTE Confidence: 0.929683228571428

 $00{:}10{:}35.240 \mathrel{--}{>} 00{:}10{:}37.081$ we found that the man that ate

NOTE Confidence: 0.929683228571428

 $00:10:37.081 \longrightarrow 00:10:38.949$ most of the calories that during

NOTE Confidence: 0.929683228571428

 $00:10:38.949 \longrightarrow 00:10:41.315$ or later during the day at dinner

 $00:10:41.320 \longrightarrow 00:10:43.440$ that they reacted more strongly

NOTE Confidence: 0.929683228571428

 $00{:}10{:}43.440 \dashrightarrow 00{:}10{:}46.000$ to high caloric visual food cues.

NOTE Confidence: 0.929683228571428

 $00:10:46.000 \longrightarrow 00:10:48.072$ And we do know that that reaction

NOTE Confidence: 0.929683228571428

00:10:48.072 --> 00:10:49.280 really predicts weight gain,

NOTE Confidence: 0.929683228571428

 $00:10:49.280 \longrightarrow 00:10:52.080$ it predicts the ability to lose weight

NOTE Confidence: 0.929683228571428

 $00:10:52.080 \longrightarrow 00:10:53.796$ and it also predicts food intake.

NOTE Confidence: 0.950157255

 $00:10:56.920 \longrightarrow 00:10:59.080$ So timing of food intake matters.

NOTE Confidence: 0.950157255

 $00:10:59.080 \longrightarrow 00:11:02.531$ So we were also interested in in

NOTE Confidence: 0.950157255

 $00:11:02.531 \longrightarrow 00:11:05.200$ nutrient sensing and so how does the

NOTE Confidence: 0.950157255

 $00:11:05.200 \longrightarrow 00:11:07.880$ brain know that there is food around?

NOTE Confidence: 0.950157255

00:11:07.880 --> 00:11:09.900 Well, that's by tasting and

NOTE Confidence: 0.950157255

 $00{:}11{:}09.900 \dashrightarrow 00{:}11{:}11.516$ smelling and seeing food.

NOTE Confidence: 0.950157255

 $00{:}11{:}11.520 \dashrightarrow 00{:}11{:}13.506$ But there is also an interaction

NOTE Confidence: 0.950157255

00:11:13.506 --> 00:11:15.820 between nutrients in the gut or the gut

NOTE Confidence: 0.950157255

 $00:11:15.820 \longrightarrow 00:11:17.870$ and the brain and the communication

NOTE Confidence: 0.950157255

 $00{:}11{:}17.870 \dashrightarrow 00{:}11{:}20.120$ goes through a vagal efferents,

00:11:20.120 --> 00:11:24.280 through gut hormones and serotonin

NOTE Confidence: 0.950157255

 $00:11:24.280 \longrightarrow 00:11:26.730$ and of course also circulating

NOTE Confidence: 0.950157255

 $00:11:26.730 \longrightarrow 00:11:28.200$ nutrients and hormones.

NOTE Confidence: 0.950157255

 $00:11:28.200 \longrightarrow 00:11:29.360$ So we wanted to study,

NOTE Confidence: 0.950157255

 $00:11:29.360 \longrightarrow 00:11:31.394$ is there something wrong in this

NOTE Confidence: 0.950157255

00:11:31.394 --> 00:11:33.101 communication between the gut and

NOTE Confidence: 0.950157255

 $00:11:33.101 \longrightarrow 00:11:34.835$ the brain in people with obesity.

NOTE Confidence: 0.911892998571429

 $00{:}11{:}37.880 \dashrightarrow 00{:}11{:}41.352$ So what we did, we infused directly into

NOTE Confidence: 0.911892998571429

 $00:11:41.352 \longrightarrow 00:11:44.398$ the stomach using a nasogastric tube,

NOTE Confidence: 0.911892998571429

00:11:44.400 --> 00:11:47.085 either glucose or lipid or

NOTE Confidence: 0.911892998571429

 $00:11:47.085 \longrightarrow 00:11:49.233$ water control over volume.

NOTE Confidence: 0.911892998571429

 $00:11:49.240 \longrightarrow 00:11:51.328$ And it was the same in

NOTE Confidence: 0.911892998571429

00:11:51.328 --> 00:11:52.720 in volume and calories,

NOTE Confidence: 0.911892998571429

 $00{:}11{:}52.720 \dashrightarrow 00{:}11{:}54.838$ in people with a healthy weight

NOTE Confidence: 0.911892998571429

 $00:11:54.838 \longrightarrow 00:11:57.240$ and also in people with obesity.

00:11:57.240 --> 00:12:00.320 And then we did Mris and SPECT scans,

NOTE Confidence: 0.911892998571429

 $00:12:00.320 \longrightarrow 00:12:02.372$ and the people with obesity then

NOTE Confidence: 0.911892998571429

 $00:12:02.372 \longrightarrow 00:12:04.480$ underwent A hypocaloric diet intervention

NOTE Confidence: 0.911892998571429

 $00:12:04.480 \longrightarrow 00:12:07.637$ and they lost 10% in 12 weeks.

NOTE Confidence: 0.911892998571429

 $00:12:07.640 \longrightarrow 00:12:08.960$ And then we rescanned them.

NOTE Confidence: 0.936976422222222

 $00:12:11.000 \longrightarrow 00:12:13.439$ So this is just to show you this is,

NOTE Confidence: 0.936976422222222

 $00:12:13.440 \longrightarrow 00:12:16.513$ this is the scan after the intragastric

NOTE Confidence: 0.936976422222222

 $00:12:16.513 \longrightarrow 00:12:19.120$ infusion of either lipid or glucose

NOTE Confidence: 0.9369764222222222

 $00{:}12{:}19.120 \dashrightarrow 00{:}12{:}20.356$ in people with a healthy weight.

NOTE Confidence: 0.936976422222222

 $00:12:20.360 \longrightarrow 00:12:23.502$ So there were so glucose gave more

NOTE Confidence: 0.936976422222222

 $00{:}12{:}23.502 \dashrightarrow 00{:}12{:}25.357$ like immediate effect to lipid.

NOTE Confidence: 0.936976422222222

00:12:25.360 --> 00:12:26.364 It took a while,

NOTE Confidence: 0.936976422222222

00:12:26.364 --> 00:12:28.240 but we saw a decrease in many,

NOTE Confidence: 0.936976422222222

 $00:12:28.240 \longrightarrow 00:12:29.665$ many brain regions,

NOTE Confidence: 0.936976422222222

00:12:29.665 --> 00:12:32.040 a decrease in brain activity,

NOTE Confidence: 0.936976422222222

 $00:12:32.040 \longrightarrow 00:12:34.820$ and those included striatal

 $00:12:34.820 \longrightarrow 00:12:37.600$ structures and limbic structures.

NOTE Confidence: 0.936976422222222

 $00{:}12{:}37.600 \dashrightarrow 00{:}12{:}40.776$ So you could say this is the physiological

NOTE Confidence: 0.936976422222222

 $00{:}12{:}40.776 \longrightarrow 00{:}12{:}43.120$ response to food in the stomach.

NOTE Confidence: 0.936976422222222

 $00:12:43.120 \longrightarrow 00:12:45.080$ When we did the same,

NOTE Confidence: 0.936976422222222

00:12:45.080 --> 00:12:47.228 this whole brain analysis,

NOTE Confidence: 0.936976422222222

 $00:12:47.228 \longrightarrow 00:12:49.913$ we found no effects whatsoever

NOTE Confidence: 0.936976422222222

 $00:12:49.920 \longrightarrow 00:12:52.520$ measurable in people with obesity.

NOTE Confidence: 0.936976422222222

 $00:12:52.520 \longrightarrow 00:12:55.964$ So somehow the brain doesn't sense that

NOTE Confidence: 0.936976422222222

 $00:12:55.964 \longrightarrow 00:12:58.680$ there's 500 kilocalories in the stomach.

NOTE Confidence: 0.936976422222222

 $00:12:58.680 \longrightarrow 00:13:00.920$ When we then zoomed in on specific regions,

NOTE Confidence: 0.936976422222222

 $00:13:00.920 \longrightarrow 00:13:02.600$ doing a region of interest analysis,

NOTE Confidence: 0.936976422222222

 $00:13:02.600 \longrightarrow 00:13:05.280$ we found that in glucose and lipid condition,

NOTE Confidence: 0.936976422222222

 $00{:}13{:}05.280 \dashrightarrow 00{:}13{:}07.404$ there was a decrease in brain

NOTE Confidence: 0.936976422222222

 $00:13:07.404 \longrightarrow 00:13:08.948$ activity in the nucleus accumbens,

NOTE Confidence: 0.936976422222222

 $00:13:08.948 \longrightarrow 00:13:10.433$ which is the ventral striatum,

 $00:13:10.440 \longrightarrow 00:13:12.500$ which is really really important

NOTE Confidence: 0.936976422222222

 $00:13:12.500 \longrightarrow 00:13:14.560$ for reward and reward learning.

NOTE Confidence: 0.936976422222222

 $00:13:14.560 \longrightarrow 00:13:19.297$ And this this decrease in in activity makes

NOTE Confidence: 0.936976422222222

00:13:19.297 --> 00:13:21.353 sense because if there's food in the stomach,

NOTE Confidence: 0.936976422222222

 $00:13:21.360 \longrightarrow 00:13:22.848$ there's no need to go and

NOTE Confidence: 0.936976422222222

00:13:22.848 --> 00:13:23.840 search for more food,

NOTE Confidence: 0.936976422222222

 $00:13:23.840 \longrightarrow 00:13:25.285$ there's no need to be

NOTE Confidence: 0.936976422222222

 $00:13:25.285 \longrightarrow 00:13:27.120$ motivated to go and eat food.

NOTE Confidence: 0.936976422222222 00:13:27.120 --> 00:13:27.878 But this, NOTE Confidence: 0.936976422222222

 $00:13:27.878 \longrightarrow 00:13:30.531$ this reaction was not present in people

NOTE Confidence: 0.9369764222222222

00:13:30.531 --> 00:13:33.419 with obesity and and more importantly

NOTE Confidence: 0.936976422222222

00:13:33.419 --> 00:13:36.737 this didn't change after these people

NOTE Confidence: 0.936976422222222

 $00:13:36.737 \longrightarrow 00:13:40.480$ with obesity lost 10% of their body weight.

NOTE Confidence: 0.936976422222222

 $00:13:40.480 \longrightarrow 00:13:44.040$ This was the same in the dorsal stratum.

NOTE Confidence: 0.936976422222222

 $00:13:44.040 \longrightarrow 00:13:44.776$ Then we looked at,

NOTE Confidence: 0.936976422222222

00:13:44.776 --> 00:13:44.960 OK,

 $00:13:44.960 \longrightarrow 00:13:46.112$ what are the determinants?

NOTE Confidence: 0.936976422222222

00:13:46.112 --> 00:13:48.256 And of course we think it's it's

NOTE Confidence: 0.936976422222222

00:13:48.256 --> 00:13:49.920 it's got brain communication,

NOTE Confidence: 0.936976422222222

 $00:13:49.920 \longrightarrow 00:13:53.070$ something we cannot easily measure in

NOTE Confidence: 0.936976422222222

 $00:13:53.070 \longrightarrow 00:13:55.920$ people but we can of course in rotor models.

NOTE Confidence: 0.9369764222222222

 $00:13:55.920 \longrightarrow 00:13:59.551$ But we found that GOP one seems to predict

NOTE Confidence: 0.936976422222222

 $00:13:59.551 \longrightarrow 00:14:02.999$ some of the response in the dorsal stratum.

NOTE Confidence: 0.936976422222222

 $00{:}14{:}03.000 \dashrightarrow 00{:}14{:}06.540$ So lipid sensing might need GOP

NOTE Confidence: 0.936976422222222

 $00:14:06.540 \longrightarrow 00:14:07.720$ one signalling.

NOTE Confidence: 0.936976422222222

 $00:14:07.720 \longrightarrow 00:14:11.473$ I'm going to go over this because of time.

NOTE Confidence: 0.936976422222222

 $00:14:11.480 \longrightarrow 00:14:13.640$ We also looked at functional connectivity.

NOTE Confidence: 0.936976422222222

 $00:14:13.640 \longrightarrow 00:14:15.900$ Now functional connectivity really is

NOTE Confidence: 0.936976422222222

 $00{:}14{:}15.900 \dashrightarrow 00{:}14{:}19.119$ looking at brain areas that change in

NOTE Confidence: 0.936976422222222

 $00:14:19.119 \longrightarrow 00:14:21.252$ synchrony and we think if they change

NOTE Confidence: 0.936976422222222

00:14:21.252 --> 00:14:23.262 in synchrony that they directly or

 $00:14:23.262 \longrightarrow 00:14:25.317$ indirectly communicate with each other.

NOTE Confidence: 0.936976422222222

 $00{:}14{:}25.320 \dashrightarrow 00{:}14{:}28.316$ So this is more brain network response

NOTE Confidence: 0.936976422222222

 $00{:}14{:}28.316 \dashrightarrow 00{:}14{:}30.132$ to intragastric nutrients and overall

NOTE Confidence: 0.936976422222222

 $00:14:30.132 \longrightarrow 00:14:31.994$ and we're still working on these data.

NOTE Confidence: 0.936976422222222

 $00:14:32.000 \longrightarrow 00:14:34.569$ We found that lipid had most effects

NOTE Confidence: 0.936976422222222

 $00:14:34.569 \longrightarrow 00:14:36.090$ on functional connectivity between

NOTE Confidence: 0.936976422222222

 $00:14:36.090 \longrightarrow 00:14:38.238$ the accumbens and some brain areas.

NOTE Confidence: 0.936976422222222

00:14:38.240 --> 00:14:41.194 Areas well glucose had more effect on

NOTE Confidence: 0.936976422222222

00:14:41.194 --> 00:14:42.871 functional connectivity between the

NOTE Confidence: 0.936976422222222

 $00:14:42.871 \longrightarrow 00:14:44.917$ dorsal stratum and and other areas.

NOTE Confidence: 0.936976422222222

 $00:14:44.920 \longrightarrow 00:14:47.620$ Interestingly also areas involved

NOTE Confidence: 0.936976422222222

 $00:14:47.620 \longrightarrow 00:14:50.621$ in memory and cognition functional

NOTE Confidence: 0.936976422222222

 $00:14:50.621 \longrightarrow 00:14:52.126$ connectivity in people with obesity

NOTE Confidence: 0.936976422222222

 $00:14:52.126 \longrightarrow 00:14:53.960$ did not show any differences.

NOTE Confidence: 0.8037825235

 $00:14:56.440 \longrightarrow 00:14:58.360$ We measured dopamine release using

NOTE Confidence: 0.8037825235

 $00:14:58.360 \longrightarrow 00:15:00.719$ SPECT and while glucose was still

00:15:00.719 --> 00:15:02.981 able to elicit dopamine release in

NOTE Confidence: 0.8037825235

 $00{:}15{:}02.981 \dashrightarrow 00{:}15{:}05.176$ people with obesity, lipid was not.

NOTE Confidence: 0.8037825235

 $00:15:05.176 \longrightarrow 00:15:08.360$ So there seems to be a reduced dopamine

NOTE Confidence: 0.8037825235

 $00:15:08.360 \longrightarrow 00:15:12.154$ response upon lipid infusion and this

NOTE Confidence: 0.8037825235

 $00:15:12.154 \longrightarrow 00:15:15.430$ this really lines up with with animal

NOTE Confidence: 0.8037825235

 $00:15:15.430 \longrightarrow 00:15:18.400$ data that was published years ago.

NOTE Confidence: 0.8037825235

00:15:18.400 --> 00:15:21.360 So why do we eat beyond homeostatic need?

NOTE Confidence: 0.8037825235

00:15:21.360 --> 00:15:24.272 I think we have shown in humans using

NOTE Confidence: 0.8037825235

 $00{:}15{:}24.272 \dashrightarrow 00{:}15{:}25.976$ neuro imaging that there are disrupted

NOTE Confidence: 0.8037825235

 $00:15:25.976 \longrightarrow 00:15:28.360$ dopamine and serotonin systems in the brain,

NOTE Confidence: 0.8037825235

 $00:15:28.360 \longrightarrow 00:15:29.960$ that there is impaired nutrient

NOTE Confidence: 0.8037825235

 $00:15:29.960 \longrightarrow 00:15:32.018$ sensing and obesity, which is not

NOTE Confidence: 0.8037825235

 $00{:}15{:}32.018 \dashrightarrow 00{:}15{:}34.152$ reversible after 10% weight loss.

NOTE Confidence: 0.8037825235

 $00{:}15{:}34.152 \dashrightarrow 00{:}15{:}37.248$ And this might account also for

NOTE Confidence: 0.8037825235

00:15:37.248 --> 00:15:39.044 regaining weight even after

 $00:15:39.044 \longrightarrow 00:15:40.954$ treatment with GOP one agonists.

NOTE Confidence: 0.8037825235

 $00:15:40.960 \longrightarrow 00:15:43.571$ So maybe we're not restoring food intake

NOTE Confidence: 0.8037825235

00:15:43.571 --> 00:15:45.840 regulation and the last two minutes,

NOTE Confidence: 0.8037825235

00:15:45.840 --> 00:15:48.255 if I may, it's just that my

NOTE Confidence: 0.8037825235

 $00:15:48.255 \longrightarrow 00:15:50.400$ interest is also a metabolism.

NOTE Confidence: 0.8037825235

 $00:15:50.400 \longrightarrow 00:15:52.672$ So we are also interested in how the

NOTE Confidence: 0.8037825235

 $00{:}15{:}52.672 \dashrightarrow 00{:}15{:}55.120$ brain regulates glucose metabolism

NOTE Confidence: 0.8037825235

00:15:55.120 --> 00:15:58.124 and besides dopamine having a huge

NOTE Confidence: 0.8037825235

00:15:58.124 --> 00:16:00.079 role in food intake regulation,

NOTE Confidence: 0.8037825235

 $00:16:00.080 \longrightarrow 00:16:04.290$ we also were able to show that that dopamine

NOTE Confidence: 0.8037825235

 $00:16:04.290 \longrightarrow 00:16:07.320$ is able to modulate insulin sensitivity.

NOTE Confidence: 0.8037825235

 $00:16:07.320 \longrightarrow 00:16:10.368$ When we increase dopamine in people in this

NOTE Confidence: 0.8037825235

 $00:16:10.368 \longrightarrow 00:16:13.717$ case they had deep brain stimulation for OCD,

NOTE Confidence: 0.8037825235

 $00:16:13.720 \longrightarrow 00:16:16.096$ so obsessive compulsive disorder

NOTE Confidence: 0.8037825235

 $00:16:16.096 \longrightarrow 00:16:18.729$ in an area near the striatum.

NOTE Confidence: 0.8037825235

 $00:16:18.729 \longrightarrow 00:16:20.710$ And we know that when we turn

 $00:16:20.770 \longrightarrow 00:16:22.480$ the stimulator on there is a,

NOTE Confidence: 0.8037825235

 $00:16:22.480 \longrightarrow 00:16:24.000$ there is dopamine release.

NOTE Confidence: 0.8037825235

 $00:16:24.000 \longrightarrow 00:16:25.520$ So we studied these,

NOTE Confidence: 0.8037825235

 $00:16:25.520 \longrightarrow 00:16:29.452$ these patients with the with the

NOTE Confidence: 0.8037825235

 $00:16:29.452 \longrightarrow 00:16:32.220$ stimulator on or off and what we found

NOTE Confidence: 0.8037825235

 $00:16:32.298 \longrightarrow 00:16:35.612$ is that when we turned the DBS on,

NOTE Confidence: 0.8037825235

 $00:16:35.612 \longrightarrow 00:16:37.868$ there was an improvement

NOTE Confidence: 0.8037825235

 $00:16:37.868 \longrightarrow 00:16:39.560$ in insulin sensitivity.

NOTE Confidence: 0.8037825235

 $00:16:39.560 \longrightarrow 00:16:40.552$ We were also thinking,

NOTE Confidence: 0.8037825235

00:16:40.552 --> 00:16:41.673 OK, if it's dopamine,

NOTE Confidence: 0.8037825235

00:16:41.673 --> 00:16:42.837 if we deplete dopamine,

NOTE Confidence: 0.8037825235

 $00:16:42.840 \longrightarrow 00:16:45.180$ we should see a reduction in

NOTE Confidence: 0.8037825235

00:16:45.180 --> 00:16:45.960 insulin sensitivity.

NOTE Confidence: 0.8037825235

 $00:16:45.960 \longrightarrow 00:16:47.794$ And that is indeed what we found

NOTE Confidence: 0.8037825235

 $00:16:47.794 \longrightarrow 00:16:50.081$ in humans when we blocked dopamine

 $00:16:50.081 \longrightarrow 00:16:51.997$ synthesis blocking tyrosine hydroxylase.

NOTE Confidence: 0.8037825235

 $00:16:52.000 \longrightarrow 00:16:55.000$ We found that not at the hepatic level,

NOTE Confidence: 0.8037825235

 $00:16:55.000 \longrightarrow 00:16:57.125$ but we found a decrease

NOTE Confidence: 0.8037825235

00:16:57.125 --> 00:16:58.400 in insulin sensitivity,

NOTE Confidence: 0.8037825235

 $00:16:58.400 \longrightarrow 00:17:00.840$ showing that dopamine in the

NOTE Confidence: 0.8037825235

00:17:00.840 --> 00:17:02.792 brain also regulates insulin

NOTE Confidence: 0.8037825235

 $00:17:02.792 \longrightarrow 00:17:06.720$ sensitivity in the body in humans.

NOTE Confidence: 0.8037825235

00:17:06.720 --> 00:17:11.676 So I think that beyond gut peptides,

NOTE Confidence: 0.8037825235

00:17:11.676 --> 00:17:14.910 the striatal dopamine system in the

NOTE Confidence: 0.8037825235

00:17:14.999 --> 00:17:18.118 brain really is a target for future

NOTE Confidence: 0.8037825235

 $00:17:18.118 \longrightarrow 00:17:20.613$ new medication reducing food intake

NOTE Confidence: 0.8037825235

00:17:20.613 --> 00:17:22.680 and improving metabolic health.

NOTE Confidence: 0.8037825235

 $00:17:22.680 \longrightarrow 00:17:25.056$ And I think working on and

NOTE Confidence: 0.8037825235

 $00:17:25.056 \longrightarrow 00:17:26.640$ understanding why nutrient sensing

NOTE Confidence: 0.8037825235

 $00{:}17{:}26.706 \dashrightarrow 00{:}17{:}28.844$ is so disturbed and whether we can

NOTE Confidence: 0.8037825235

 $00:17:28.844 \longrightarrow 00:17:31.414$ restore that in the long term with the

 $00:17:31.414 \longrightarrow 00:17:33.319$ new medication is really essential.

NOTE Confidence: 0.8037825235

 $00:17:33.320 \longrightarrow 00:17:35.560$ So I want to thank all these

NOTE Confidence: 0.8037825235

 $00:17:35.560 \longrightarrow 00:17:36.640$ people and yourself.

NOTE Confidence: 0.951019698

 $00:17:44.320 \longrightarrow 00:17:45.684$ Thank you for that.

NOTE Confidence: 0.951019698

 $00{:}17{:}45.684 \dashrightarrow 00{:}17{:}48.634$ We have time may be for one or two

NOTE Confidence: 0.951019698

00:17:48.634 --> 00:17:50.800 very quick questions. Yes, Diana.

NOTE Confidence: 0.5877882175

 $00:17:53.240 \longrightarrow 00:17:53.720$ Oh, there you go.

NOTE Confidence: 0.716807681111111

00:17:54.120 --> 00:17:55.794 Never mind. Do you want to just say it?

NOTE Confidence: 0.716807681111111

 $00:17:55.800 \longrightarrow 00:17:58.000$ I'll repeat it, I'll repeat it. For the

NOTE Confidence: 0.512718056666667

00:17:58.800 --> 00:18:01.158 current response in the nutrient setting,

NOTE Confidence: 0.512718056666667

 $00{:}18{:}01.160 \dashrightarrow 00{:}18{:}03.920$ the dopamine system, would you

NOTE Confidence: 0.512718056666667

 $00:18:03.920 \longrightarrow 00:18:06.452$ advocate for something like a ketogenic

NOTE Confidence: 0.512718056666667

 $00{:}18{:}06.452 \dashrightarrow 00{:}18{:}09.920$ diet or a little carbohydrate diet

NOTE Confidence: 0.66835914

 $00:18:09.920 \longrightarrow 00:18:10.520$ to kind of

NOTE Confidence: 0.6474328625

 $00:18:10.520 \longrightarrow 00:18:13.380$ maintain or reset the system?

 $00:18:13.380 \longrightarrow 00:18:14.680$ Well, that's an interesting thought.

NOTE Confidence: 0.6474328625

 $00:18:14.680 \longrightarrow 00:18:15.670$ We don't know.

NOTE Confidence: 0.6474328625

 $00:18:15.670 \longrightarrow 00:18:18.484$ We we do know that fatty acids modulate

NOTE Confidence: 0.6474328625

 $00:18:18.484 \longrightarrow 00:18:21.040$ the response in the serotonin them

NOTE Confidence: 0.6474328625

 $00:18:21.040 \longrightarrow 00:18:23.639$ in people with a healthy weight.

NOTE Confidence: 0.6474328625

 $00:18:23.640 \longrightarrow 00:18:28.125$ So that whether I think that the the

NOTE Confidence: 0.6474328625

 $00:18:28.125 \longrightarrow 00:18:30.389$ the ketones and fatty acids that

NOTE Confidence: 0.6474328625

 $00:18:30.389 \longrightarrow 00:18:32.964$ enter the brain that's more you know

NOTE Confidence: 0.6474328625

 $00:18:32.964 \longrightarrow 00:18:35.130$ that that's a different route than

NOTE Confidence: 0.6474328625

00:18:35.205 --> 00:18:37.637 the vagal afferens in the in the gut.

NOTE Confidence: 0.6474328625

 $00:18:37.640 \longrightarrow 00:18:40.290$ Whether caloric restriction or intermittent

NOTE Confidence: 0.6474328625

 $00:18:40.290 \longrightarrow 00:18:43.432$ fasting to increase ketones and and

NOTE Confidence: 0.6474328625

00:18:43.432 --> 00:18:45.916 fatty acids will improve food intake,

NOTE Confidence: 0.6474328625

 $00:18:45.920 \longrightarrow 00:18:46.826$ we don't know.

NOTE Confidence: 0.6474328625

 $00:18:46.826 \longrightarrow 00:18:50.240$ But but in in animal models with

NOTE Confidence: 0.6474328625

 $00:18:50.240 \longrightarrow 00:18:52.728$ you know prolonged intermittent

 $00:18:52.728 \longrightarrow 00:18:55.383$ fasting where where animals or would

NOTE Confidence: 0.6474328625

 $00:18:55.383 \longrightarrow 00:18:57.520$ only eat for a few hours a day,

NOTE Confidence: 0.6474328625

 $00:18:57.520 \longrightarrow 00:19:00.054$ they do see all kinds of improvements

NOTE Confidence: 0.6474328625

 $00:19:00.054 \longrightarrow 00:19:02.605$ in in body weight and in in

NOTE Confidence: 0.6474328625

00:19:02.605 --> 00:19:03.820 memory function etcetera.

NOTE Confidence: 0.6474328625

00:19:03.820 --> 00:19:05.035 So who knows?

 $\begin{aligned} & \text{NOTE Confidence: } 0.6474328625 \\ & 00:19:05.040 --> 00:19:05.280 \text{ Yeah,} \end{aligned}$

NOTE Confidence: 0.950899134

 $00:19:07.240 \longrightarrow 00:19:08.600$ yes. One more quick question.

NOTE Confidence: 0.969072405714286

 $00:19:29.120 \longrightarrow 00:19:32.320$ Well, that's a really difficult

NOTE Confidence: 0.969072405714286

 $00{:}19{:}32.320 \dashrightarrow 00{:}19{:}35.076$ question because mental health in

NOTE Confidence: 0.969072405714286

 $00:19:35.076 \longrightarrow 00:19:38.520$ people with obesity of course has many.

NOTE Confidence: 0.969072405714286

 $00:19:38.520 \longrightarrow 00:19:41.404$ You know the the, the etiology of

NOTE Confidence: 0.969072405714286

 $00:19:41.404 \longrightarrow 00:19:45.032$ that is very complex and I don't know

NOTE Confidence: 0.969072405714286

 $00{:}19{:}45.032 \dashrightarrow 00{:}19{:}47.540$ whether in humans we can distangle

NOTE Confidence: 0.969072405714286

 $00:19:47.621 \longrightarrow 00:19:50.077$ these these different factors.

 $00:19:50.080 \longrightarrow 00:19:51.790$ Given the effects of obesity

NOTE Confidence: 0.969072405714286

 $00:19:51.790 \longrightarrow 00:19:53.158$ on the serotonin system,

NOTE Confidence: 0.969072405714286

 $00{:}19{:}53.160 \dashrightarrow 00{:}19{:}56.604$ I can imagine that that might make

NOTE Confidence: 0.969072405714286

00:19:56.604 --> 00:19:59.811 them more prone to to depression,

NOTE Confidence: 0.969072405714286

00:19:59.811 --> 00:20:03.520 but I'm not sure. Yeah, great.

NOTE Confidence: 0.969124146923077

 $00{:}20{:}03.520 \longrightarrow 00{:}20{:}06.490$ Thank you very much. And we are going to

NOTE Confidence: 0.969124146923077

 $00{:}20{:}06.490 \dashrightarrow 00{:}20{:}09.080$ move into our second networking break.