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Introduction

Bayesian Analysis of Gene Expression Levels (BAGEL) is a program that allows
statistical inferences to be made regarding differential gene expression between two or
more samples measured on spotted (two-channel) microarrays.  BAGEL makes these
inferences from normalized ratio data, on a gene-by-gene basis.  The advantages of
BAGEL include ease of use, straightforward interpretation of results, statistical
robustness, flexibility in accepting different experimental designs, and that it is free.
BAGEL was written by Jeffrey Townsend, who periodically updates and improves the
program, and to whom bugs should be reported.  BAGEL is available for Windows, Mac
OS9, Mac OSX, and Linux. BAGEL can be downloaded from Jeff’s website,
http://web.uconn.edu/~townsend.

Statistical model

A number of factors can influence the signal intensity of labeled DNA hybridizing to a
microarray spot, such as hybridization efficiency or concentration of target sequences in
the spot.  Any such factors that will be shared by samples hybridizing to the same spot
will be eliminated by considering the ratio of the two signal intensities.  BAGEL
explicitly takes this into account by using ratio measurements, not single-channel signals,
coming from two-dye competitive hybridizations.  BAGEL makes transitive comparisons
across ratios, for example inferring the ratio of sample A to sample C across a set of
hybridizations that directly compare sample A to sample B and sample B to sample C.
Data that are appropriate for analysis by BAGEL must therefore have the following
properties:

1) The data should be collected in such a way that pairs of samples share sources of
variation that are non-trivial and that are not of interest to the researcher; and the
relative magnitude of some metric between the two samples is the measurement
of interest.  The originally envisioned use for BAGEL, two-channel microarray
data, is an obvious example of data with this structure, but in principle BAGEL
could be used to analyze any other kind of data that fit these criteria.  For this
reason, tiled microarray platforms such as Affymetrix do not lend themselves
easily to BAGEL analysis.

2) All genotypes, tissues, treatments etc. (hereafter referred to as ‘expression nodes’)
to be analyzed must be connected to all other nodes through direct or indirect
comparisons.  For example, given four nodes, a set of microarray experiments that
competitively hybridized node 1 vs. node 2, node 2 vs. node 3, and node 3 vs.
node 4 would permit the estimation of relative expression levels of genes across
all four nodes.  On the other hand, a set of experiments that competitively
hybridized node 1 vs. node 2 and node 3 vs. node 4 would permit the estimation
of gene expression levels between nodes 1 and 2 and between 3 and 4, but no
estimates could be made regarding comparisons between 1 and 3.  Any
experimental design incoporating a reference sample will necessarily fulfill this



criterion, as all nodes are connected through their direct comparisons with the
reference.

3) There must be a sufficient number of measurements (replicate experiments) to
estimate the parameters.  In principle, this means as many measurements as
nodes, or half as many hybs as nodes (when estimating a single variance
parameter, see below).  In practice, requirement 2 will usually necessitate more
than this many hybs, and of course, the greater the replication, the more precise
the estimates of gene expression. Experience suggests that an experimental design
providing at least three measurements for each node is a good target number for
providing reasonable statistical power.

Formally, the statistical model employed by BAGEL assumes that the measured
fluorescence intensity for one channel is a function of (1) the true quantity of the labeled
mRNA species; (2) some number of multiplicatively and/or additively confounding
factors that are specific to the spot in question but shared by the measured intensity from
the other channel; and (3) some number of unbiased, randomly distributed error terms
(for example, reverse transcription or labeling efficiency).  If the error terms contribute
additively, the observed ratios of gene expression between the ith and the jth samples (zij)
should be similar to the ratio of two normal distributions, and can be approximated by the
function
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where µi is the expression level and σ2
i is the variance of a gene in sample i.   If the error

terms contribute multiplicatively, then the ratio zij can be approximated by the ratio of two
lognormal distributions using the function
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BAGEL can implement both kinds of error models.

This approach requires the estimation of 2n –1 parameters (n-1 expression levels and n
variances) for each gene.  One way to reduce the number of parameters is to assume that,
for a given gene, all the nodes have the same error variance.  This reduces the number of
parameters to n, and consequently reduces the number of replicates required for statistical
power.  Similarly, one can assume that, for a given gene, all samples have a constant
relationship with the expression level, i.e. that they have a common coefficient of
variation (ν = σi/µi for all i).  This approach also requires estimating n free parameters.

BAGEL explores the likelihood function derived from either of the ratio formulas above
for all nodes using a markov chain monte carlo (MCMC) approach in a Bayesian
framework.  This method starts with a random vector of parameters and then changes two



of the parameters by small, random steps.  At each step the likelihood of the data given
the model above and the new parameter values is calculated.  If the new parameters give
a better fit to the data, then the new values are accepted.  If the new parameters give a
worse fit to the data, then the new values are accepted with a probability proportional to
their likelihood.  In this way the markov chain searches the parameter space, finding
combinations of relative gene expression levels that produce the greatest likelihood, and
samples from the chain are used to construct the Bayesian posterior probability of the
parameters given the data.

Figures 1-3 show an example of a markov chain from BAGEL analysis of a single gene
with four nodes (gene BcDNA:LD09936 from the example dataset discussed below).
The relative expression levels for the four nodes are indicated on the y axis in the upper
panel (note that they have not yet been normalized such that the node with the lowest
expression is set to one) and the step in the chain is shown on the x axis.  The lower panel
shows the likelihood of the data given the parameters (relative expression levels) at that
step in the chain.  Figure 1 shows the first 200 steps and Figure 2 shows the first 1000
steps in the chain.  Note that the relative expression levels quickly move away from their
(random) initial values towards greater or lesser expression levels more consistent with
the data, as indicated by the jumps in likelihood.  This initial exploration of parameter
space, while important for finding the peak of greatest likelihood, should not contribute
to the data sampled from the chain, or it will not converge on the posterior probability of
the Bayesian formulation of the functions shown above.  Put another way, we don’t want
BAGEL to make inferences from the data in regions of low likelihood simply as a result
of the (random) initial parameter settings.  For this reason, BAGEL runs the chain for a
“burn-in” period before beginning to sample parameter values for the posterior
probability.   The default length of this burn-in is 20,000 steps in the chain; you can see
from Figures 1 and 2 that the parameter values move rather quickly to a region of
parameter space and stay there.  Figure 3 shows the last 1000 steps sampled from the
analysis, following a 20,000 step burn-in.  The relative expression levels for all four
nodes have stabilized around the most likely values.  One thing to note is that Figures 1
and 2 show the parameter values at each step of the chain, whereas Figure 3 shows every
20th step in the chain (so although 1000 steps are shown, the data actually spans 20,000
steps).  This is known as the period of sampling from the chain, and is important because
it removes correlations between successive steps (the plateaus for a given node in Figures
1 and 2) which otherwise compromise the ability of the markov chain to explore the full
range of potential parameter values.

BAGEL infers relative expression levels and statistical significance from the parameter
values it samples from the chain.  The relative expression level of a node for a given gene
is the median value across the samples from the chain, normalized relative to the lowest
median expression level.  The 95% credible intervals are the values within which 95% of
the samples from the chain are bounded, and P-values for the “hypothesis” that node A >
node B are simply the proportions of samples from the chain where node A’s expression
level was greater than node B’s.



Implementation

BAGEL does not perform normalization of raw microarray data (for example, to account
for systematic differences in signal intensity between the two fluorophores), and an
appropriate normalization method should therefore be implemented prior to BAGEL
analysis.  Following normalization, the data must be formatted in a way that BAGEL can
use.  The appropriate format is a tab-delimited text file that contains (normalized) ratio
data for all the relevant genes and hybridizations, as well as some header rows and
columns (see below).

The details for loading and running BAGEL will differ depending on your platform.  See
the readme file that comes with the version of BAGEL you have downloaded for specific
instructions.

Upon executing BAGEL, the following text will appear on your terminal:

B.A.G.E.L.

Acceptable files for Unix B.A.G.E.L. are tab-delimited text files with three
header rows.  The second and third rows must containing unique names for each
experimental expression node and reference expression node, followed by any
number of data rows for each gene of interest:

[Your Notes]  [Your Notes]  [Label1]  [Label2]  [Label3]...
[Your Notes]  [Channel1]    Exp1      Exp2      Exp3   ...
[Your Notes]  [Channel2]    Ref1      Ref2      Ref3    ...
ORF1          CommonName1   Ratio1    Ratio2    Ratio3  ...
...           ...           ...       ...               ...

Please type the exact name of a text file of microarray ratio results to
analyze:

This text shows you the tab-delimited text format in which BAGEL expects your input
file.  There are three header rows to a properly formatted BAGEL input file.  Square
brackets indicate information that may be in your input file for your own reference only.
All unbracketed entries must be present.  There is no need for the experiments (Label1,
Label2, Label3...) to be in any particular order, and there is no inherent difference
between experimental (Exp) and reference (Ref) samples.  In fact, in any experimental
design wisely incorporating dye-swaps, sample names will presumably appear in both
row 2 and row 3.  It is, however, essential that a sample name be exactly consistent across
all columns, or else BAGEL will infer two different samples when there is in fact only
one.

At the prompt following the example data format, type the name of the input file,
including the directory path.  For example, in UNIX, directory pathnames look something
like



/Users/jeff/DOCUMENTS/RESEARCH/Software/BAGEL/Datafilename.unx

NOTE:  Keep Datafilename  and your experimental node names short.  If the
Datafilename is too long, BAGEL has to truncate it and use a far less intutitive name for
your output file.

BAGEL then asks you to verify the number of hybs and the names of the expression
nodes (sample•treatments) in your experimental design.  Press RETURN to verify, or
press ‘q’ to quit and correct your input file.

You are then presented with a menu of options:

Current MCMC settings:
(E)rror Model: Additive errors, estimating/constraining Coefficient of
Variation terms
(C)onstrained Coefficient of Variation: True
(I)nitial values:
Mu[M1-2] := 1.00        Coefficient of Variation[M1-2] := 0.2000
Mu[M2-8] := 1.00        Coefficient of Variation[M2-8] := 0.2000
Mu[M5-7] := 1.00        Coefficient of Variation[M5-7] := 0.2000
Mu[M7-8] := 1.00        Coefficient of Variation[M7-8] := 0.2000
(M)u step size: 0.50
(V)ariance/CV step size: 0.500
(B)urn in, # generations: 20000
(P)eriod of sampling from the Markov chain: 20
(G)enerations to be sampled: 10000
(F)ull output of the chain: False
(T)uning depth maximum: 8

(E)rror Model:  This option allows you to choose between additive and multiplicative
errors, and whether you wish to estimate or constrain the variance or the CV of the gene
expression levels, as was described above. All the models BAGEL uses work fairly well,
and results are usually quite similar (see below), so unless you have reason to, it’s
probably best to use the default settings (additive errors, constraining coefficients of
variation).

(C)onstrained Variance/Coefficient of Variation: If TRUE, variances/coefficents of
variation for all expression nodes are assumed to be the same.  With this option, you must
have as many measurements as expression nodes.  If FALSE, variances for all expression
nodes are separately estimated.  In this case, you must have at least twice as many
measurements as expression nodes (minus one).  Unless your data is very highly
replicated, using constrained variance is recommended.  With underreplicated data,
estimation of variances for each sample is very imprecise and can lead to misleading
results.  When a design is well-replicated, to the extent it has been tested so far, it seems



that estimating each variance independently changes BAGEL estimates of the expression
levels very little.

(I)nitial values:  The starting Mu and Sigma Squared parameter values for the Markov
Chain.  In some applications of the MCMC method, it is very important to try many
different initial starting values to ensure that the chain does not get stuck in one region of
the state space.  This is not much of an issue with the BAGEL models.  With moderately
decent microarray data, it does not get stuck in local peaks.

(M)u step size:  The step size is a very important parameter in the MCMC
implementation, which BAGEL automatically tunes for you as long as (T)uning Depth
maximum, below, is greater than one.  Note that BAGEL uses information from genes
previously analyzed in your dataset to help it guess the right step size.

(V)ariance/CV step size: See (M) above.

(B)urn in, # generations: The default burn-in (20000 iterations) is rather excessive for
most data sets.  However, it is nice to feel confident that stationerity in the chain has been
reached.  Decreasing this parameter will make BAGEL run slightly faster.  It is up to you
to ensure that BAGEL is reaching stationerity.  One way to do this is to run multiple
chains and check that they are converging on the same results.

(P)eriod of sampling from the Markov chain: This is how many iterations are performed
until the current state is sampled from the chain to construct posterior distributions.
When the period is greater than one, this is referred to as “thinning the chain”.  It subdues
correlations that are present between subsequent states of the chain.  Decreasing this
period substantially decreases computation time, but compromises the independence of
the samples and thereby the adequate mixing of the chain.

(G)enerations to be sampled: Ten thousand generations yields accuracy to about three
digits.  Increasing the number of generations (iterations) increases the number of digits of
accuracy.  The product P * G largely determines the amount of time necessary for a
BAGEL run for a gene.

(F)ull output of the chain: FALSE.  Keep it that way, unless your input file has only one
or two genes and you really like BAGEL to talk about everything it’s doing.  If you run
with Full Output, BAGEL saves the posterior distributions for Mu for every sample.  On
a genome-wide data set, it could rapidly fill your hard drive.

(T)uning depth maximum: How hard (in MCMC runs) you wish BAGEL to try to find an
optimal step size for a gene.  In the newest versions of BAGEL (>3.0), an optimal step
size is discovered in a few tries, and almost always in six or seven, so there is little point
in changing this from the default value (8 tuning iterations).  A gene for which no optimal
step size is found is marked FALSE under "Acceptable?" in the output file, but this just
about never happens.



When you are done changing settings, or if (more likely) you have not changed them at
all, press RETURN, and BAGEL will begin to work on your data set.  BAGEL currently
takes a long time to run, say, a minute per gene or more.  Thus, it is frequently convenient
to set it going on a computer you won’t need for the night, and leave it alone.

Example analysis

 The microarray data used here is taken from Ranz et. al. 2003.  These experiments
analyzed mRNA levels for ~5000 genes in adult males and females of Drosophila
melanogaster and a closely related species, Drosophila simulans.  This dataset therefore
has four nodes, and the experimental design and level of replication is shown in Figure 4.
For simplicity of illustration, four genes from the full dataset were selected.

1) Execute BAGEL

B.A.G.E.L.

Acceptable files for B.A.G.E.L. are tab-delimited text files
with three header rows.  The second and third rows must containing unique names
for each experimental expression node and reference expression node,
followed by any number of data rows for each gene of interest:

[Your Notes]  [Your Notes]  [Label1]  [Label2]  [Label3]...
[Your Notes]  [Channel1]    Exp1      Exp2      Exp3    ...
[Your Notes]  [Channel2]    Ref1      Ref2      Ref3    ...
ORF1          CommonName1   Ratio1    Ratio2    Ratio3  ...
...           ...           ...       ...               ...

Please type the exact name of a text file of microarray ratio results to
analyze:
{Dros_spp}

2) Input file name and verify file format

D. melanogaster 
males

D. melanogaster  
females

D. simulans 
males

D. simulans 
females

arrowhead indicates 
sample labeled with 

Cy5

Figure 4



Verifying Input File Dros_spp
Dros_spp        DYE     1A      1B      17B     27A     6A      6B      18A    
18B     28B      19A     21A     21B     26A     26B     28A     20B     22A     
22B     29A     29B      24B

dataset

Initializing ExpressionNodeNameList...
Assigning names to expression nodes.....................

Number of Hybs: 21

Press RETURN to verify or q to quit:
{RETURN}

gene name

Assigning more names to expression nodes.....................

Please verify that 4 expression nodes are desired,
that all desired nodes are are listed below, and
that each of the following are unique expression nodes.
CS
CSf
Sim
Simf

Press RETURN to verify or q to quit:
{RETURN}

3) Choose parameter settings

Assigning experimental node names to hyb list.....................
Assigning reference node names to hyb list.....................
File Dros_spp header rows verified.

Current MCMC settings:
(E)rror Model: Additive errors, estimating/constraining Coefficient of
Variation terms
(C)onstrained Coefficient of Variation: True
(I)nitial values:
Mu[CS] := 1.00  Coefficient of Variation[CS] := 0.2000
Mu[CSf] := 1.00 Coefficient of Variation[CSf] := 0.2000
Mu[Sim] := 1.00 Coefficient of Variation[Sim] := 0.2000
Mu[Simf] := 1.00        Coefficient of Variation[Simf] := 0.2000
(M)u step size: 0.50
(S)igma / mu step size: 0.500
(B)urn in, # generations: 20000
(P)eriod of sampling from the Markov chain: 20
(G)enerations to be sampled: 10000
(F)ull output of the chain: False
(T)uning depth maximum: 8



Enter a letter to change a parameter, q to quit, or RETURN to go on:
{RETURN}

4) BAGEL is off and running

PGRP-SC1b(GH07464)
Constructing Comparison Matrix:
              CS     CSf     Sim    Simf
      CS    1.29    1.48 0.67    0.53 0.15 0.63 0.35       

     CSf    1.05 1.38                       0.35 0.40 0.46

     Sim    7.27 1.88                       1.29 0.55 1.14

    Simf            3.33 2.19    1.06 2.04       

V/CV A.R.: 0.14...

Here BAGEL takes all of the available data for the first gene (PGRP-SC1b) and starts to
run the markov chain.  The line at the bottom (V/CV A.R. . . ) shows BAGEL’s attempts
to tune the jump size in the chain to produce an appropriate acceptance rate (between
0.15 and 0.5).  Once the chain has run successfully, BAGEL shows you the results:

Mu Acceptance ratio: 0.40               True
Coefficient of Variation Acceptance ratio: 0.40         True
Mu SS: 0.500    V/CV SS: 0.1498
PGRP-SC1b(GH07464),     CS: 0.32        1.00    0.34
PGRP-SC1b(GH07464),     CSf: 0.35       1.17    0.35
PGRP-SC1b(GH07464),     Sim: 0.39       2.37    0.38
PGRP-SC1b(GH07464),     Simf: 0.40      2.85    0.38
Density of Best Likelihood: 6.496307351635393e-06
Logmean MuStepSize: 0.50
Logmean VCVStepSize: 0.15
Genes Examined: 1

The D. simulans female expression level for PGRP-SC1b, for instance, is estimatdd to be
2.85, with a 95% credible interval between 2.45 and 3.23.   All expression levels are
estimated in comparison to the sample with the lowest expression level (here, male D.
melanogaster).

BAGEL then moves on to the next gene . . .

BcDNA:LD09936(LD09936)
Constructing Comparison Matrix:
              CS     CSf     Sim    Simf
      CS    1.01    8.9120.68    0.42 0.47 0.42 0.51       

     CSf    0.08 0.07                       2.08 1.55 1.39

     Sim    1.94 1.35                      36.0649.9537.74



    Simf            0.67 0.51    0.02 0.01       

Mu Acceptance ratio: 0.25               True
Coefficient of Variation Acceptance ratio: 0.15         True
Mu SS: 0.500    V/CV SS: 0.1498
BcDNA:LD09936(LD09936),         CS: 1.06        11.35   0.96
BcDNA:LD09936(LD09936),         CSf: 0.94       1.78    1.24
BcDNA:LD09936(LD09936),         Sim: 1.53       22.10   1.16
BcDNA:LD09936(LD09936),         Simf: 0.80      1.00    1.01
Density of Best Likelihood: 4.584386846285838e-11
Logmean MuStepSize: 0.50
Logmean VCVStepSize: 0.15
Genes Examined: 2

CG12200(LD30246)
Constructing Comparison Matrix:
              CS     CSf     Sim    Simf
      CS            0.11 0.15    0.87 0.99 1.04        

     CSf    5.76 4.34                       9.42 7.04 5.92

     Sim    0.85 1.12                       1.31 2.06

    Simf            0.12 0.19    0.55 0.80       

V/CV A.R.: 0.07...
Mu Acceptance ratio: 0.20               True
Coefficient of Variation Acceptance ratio: 0.32         True
Mu SS: 0.500    V/CV SS: 0.0299
CG12200(LD30246),       CS: 0.20        1.28    0.21
CG12200(LD30246),       CSf: 0.48       7.13    0.45
CG12200(LD30246),       Sim: 0.28       1.43    0.33
CG12200(LD30246),       Simf: 0.19      1.00    0.19
Density of Best Likelihood: 4.516871022806865e-01
Logmean MuStepSize: 0.50
Logmean VCVStepSize: 0.09
Genes Examined: 3

qtc(SD06355)
Constructing Comparison Matrix:
              CS     CSf     Sim    Simf
      CS    0.93    3.64 2.06    0.90 1.13 0.82 0.96       

     CSf    0.30 0.39                       0.85 0.88 0.97

     Sim    0.89 1.09                       1.83 2.61

    Simf            1.05 0.85    0.52 0.28       



Mu Acceptance ratio: 0.22               True
Coefficient of Variation Acceptance ratio: 0.18         True
Mu SS: 0.500    V/CV SS: 0.0875
qtc(SD06355),   CS: 0.19        2.59    0.18
qtc(SD06355),   CSf: 0.18       1.00    0.18
qtc(SD06355),   Sim: 0.19       2.65    0.19
qtc(SD06355),   Simf: 0.18      1.11    0.17
Density of Best Likelihood: 1.481589125998954e+03
Logmean MuStepSize: 0.50
Logmean VCVStepSize: 0.09
Genes Examined: 4

Press RETURN when ready.

And it’s done.

Output

BAGEL output is a tab-delimited text file with estimates for each expression node,
additions for 95% upper- bounds, and subtractions for 95% lower-bounds.  These are
formatted such that creation of an EXCEL column or bar graph should be very easy.
Other columns let you know of the Mu and Variance/CV step acceptance rate as well as
an “Acceptable?” column which discloses whether BAGEL found acceptable acceptance
rates (between 0.15 and 0.5) for both parameters.  Lastly, P-values for whether
expression level is greater in one sample than another occupy a number of columns.  You
should be aware that these P-values are not "corrected" in any way for multiple tests; you
should have the appropriate scientific skepticism and look carefully for corroborating
biologically consistent evidence.  Furthermore, the P-value is only as precise as the
number of samples taken from the chain.  If 10,000 samples were taken, then a P-value of
zero really means that in none of the samples taken from the chain did the comparison
hold, and so the P-value is really P < 0.0001.  The results text file is on the same drive in
the same folder as your input file.  The output filename will be the same as the original
Datafilename,  but will have the characters “.BAR” appended.

The output from the example datafile looks like this:

gene name
Unique ID Common Name CS CSf Sim Simf ...
PGRP-SC1b GH07464 1 1.17 2.37 2.85 ...
BcDNA:LD09936 LD09936 11.35 1.78 22.10 1 ...
CG12200 LD30246 1.28 7.13 1.43 1 ...
qtc SD06355 2.59 1 2.65 1.11 ...
...

(-)97.5%[CS] (-)97.5%[CSf] (-)97.5%[Sim] (-)97.5%[Simf]
0.32146 0.34871 0.38685 0.39713 ...



1.055 0.94196 1.52557 0.79782 ...
0.20477 0.48235 0.28134 0.18666 ...
0.18859 0.17951 0.18848 0.17595 ...
...

P(CS>CSf) P(CS>Sim) P(CS>Simf) P(CSf>CS) P(CSf>Sim) ...
0.2543 0.0001 0 0.7457 0.0004 ...
1 0 1 0 0 ...
0 0.1591 0.9642 1 1 ...
1 0.3336 1 0 0 ...

If BAGEL is halted mid-run, a number of files with ".BAM" suffixes may be found in the
BAGEL folder.  These files temporarily store the sampled Mu values and may be
summarily deleted.

Comparison of error models

Figure 5 shows the results of BAGEL analysis of the four genes under different error
models.  Each error model was run twice in order to assess variation between
independent runs within a model.  With the level of replication shown in Figure 4,
changing between additive and multiplicative error models, and constraining variances or
CVs makes very little difference to the results.  For three of the genes, choosing
unconstrained variances also has little effect on the results, aside from increasing the
width of the 95% credible intervals.  However, for BcDNA:LD09936, choosing an
unconstrained variance model does have a significant impact on the relative expression
levels inferred by the markov chain.  This result, given the well replicated nature of these
experiments, underscores the need to be cautious when choosing an unconstrained
variance/CV model.



Known Bugs

1)  In Mac OS 9, sometimes BAGEL will crash after finishing some of your data, with
the following error:

Runtime error –188 at line number 442: No more memory

Or something similar.  The output file already created is perfectly fine, and you can use
the results already saved and start at the first unBAGELed gene.  To prevent the program
from crashing again, use the Get Info window for the BAGEL application, and increase
the amount of preferred memory by at least the percentage of unBAGELed genes before
your crash.

2)  A missing data point MUST be indicated with a “0” ratio, NOT an empty cell in the
input file.  Unfortunately, BAGEL’s I/O routine currently skips over empty cells in your
input file, yielding incorrect results and bizzare errors.  If  BAGEL ever crashes or gives
you a bizarre error message mid-run, always check to ensure that there are no empty cells
in your input file.

More Information

This tutorial was compiled by Colin Meiklejohn.  Its contents were constructed from the
original publication describing BAGEL (Townsend and Hartl 2002), a subsequent report
elaborating the error models (Townsend 2003), and Jeff Townsend’s readme file that
accompanies the BAGEL download.  Questions regarding the use of BAGEL and this
tutorial can be addressed to Colin Meiklejohn (meiklej@fas.harvard.edu).  Please report
bugs or suggestions for changes to Jeff Townsend (townsend@nature.berkeley.edu).
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