Applying Regionalized Tessellation to Detect Diagnostic Markers of ASD in Resting EEG Data

Adham Alya3, Takumi McAllister1, Simone Hasselmo1, Ariel Chang2, Max Rolison1, Taylor Halligan1, Brianna Lewis1, Talena Day1, Kathryn McNaughton1, Kimberly Ellison1, Julie Wolf3, Kayla Stinson3, Sabrina Malak4, Julie Tranapan1, Elia Jarzabek1, James McPartland2, Adam Napol5

1 McPartland Lab, Yale Child Study Center, New Haven, CT 2 Seattle Children’s Innovation & Technology Lab (SCITL), Seattle Children’s Research Institute 3 Department of Pediatrics, University of Washington

Background

- Autism spectrum disorder (ASD) is a developmental disorder associated with deficits in social interaction and the presence of restricted and repetitive behaviors.
- Event-related potentials (ERPs), such as the N170 and P100, are well-known neurophysiological markers that have shown promise in differentiating individuals with ASD from typically developing (TD) individuals.
- ERP-based analysis entails the risk of constituting substantial overlap in amplitude and latency responses and the results do not take into consideration dynamic relationships between components and topography.
- Analysis of Variance (ANOVA) relies on point estimates of peak or latency of ERP components and only provides limited information regarding the precise temporal and spatial differences between groups.
- Variations of Mass Univariate Analysis (MUA) are alternative approaches that hypothesize exchangeability of data points/conditions and rely on permutations to identify the spatial or temporal data points that distinguish groups.
- MUA approaches are limited in that they rely on simple statistical tests (t-tests) and arbitrary choices of initial parameter settings. Furthermore, they are limited to simple point estimates of electroencephalogram (EEG) features such as peak or latency estimates.
- Our objective was to develop a new mechanism that was applicable to arbitrary EEG features, robust to false positives and to miss differences between EEG components and topography by systematically identifying scalp regions that consistently identify significant differences between groups.

Regionalized Tessellation: Why is it needed and what is the contribution?

- Regionalization (RegTess) identifies scalp regions that show systematically different responses to the activity presented across groups.
- The RegTess methodology was developed to be insensitive to feature representation (i.e., amplitude, frequency, coherence) unlike variations of MUA that are limited to frequency and ERP analysis.
- Unlike variations of MUA that are dependent on the assumption of fixed neighboring size and minimum cluster size, RegTess does not have these limitations and considers any region that contains at least one electrode.
- While variations of MUA tend to identify localized significance within nearby electrodes, RegTess utilizes region representation to capture significance across multiple clusters.
- RegTess avoids permutation and is not subject to the same complications as MUA methods, such as false positive/negatives and family-wise errors.

Method

Sample

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Age</th>
<th>IQ</th>
<th>Max Age</th>
<th>Min Age</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>male</td>
<td>14.26</td>
<td>102.71</td>
<td>17.99</td>
<td>8.53</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>13.98</td>
<td>104.11</td>
<td>17.99</td>
<td>8.16</td>
<td>40</td>
</tr>
<tr>
<td>ASD</td>
<td>female</td>
<td>13.16</td>
<td>102.38</td>
<td>16.43</td>
<td>9.07</td>
<td>36</td>
</tr>
<tr>
<td>TD</td>
<td>female</td>
<td>12.29</td>
<td>106.45</td>
<td>17.03</td>
<td>8.94</td>
<td>33</td>
</tr>
</tbody>
</table>

Experimental Paradigm:

- EEG was recorded continuously at 500Hz using a 128-channel HydroCel Geodesic Sensor Net (Naples, Florida).
- Participants viewed a fixation cross on a computer monitor for 1 minute and then sat with their eyes closed for 1 minute.
- The sample was composed of 130 individuals with ASD and 73 typically developing (TD) control participants.

Preliminary Results with Alpha Amplitude Correlation

Find the mean distance of the nearest 3 electrodes to each electrode i (called mi). The cube dimension is set to the overall mean of all mi (called l).

The RegTess algorithm uses the following steps to identify those regions that best reflect between group differences in EEG data:

1. Pre-Processing: The following preprocessing steps are applied:
 - The EEG data is converted to fixed-size non-overlapping epochs (1s here).
 - 100-Hz bandpass filtering.
 - Artifact detection.

2. RegTess - Wave-Subject: For each participant in the study, use the mechanism presented in Algorithms 1 and generate a set of Red and their associated Green regions for each level considered (in our example, to level regions are considered).

 Within-Group: Generate two region-banks containing all the regions found to be significant in TD (TD-bank) and ASD (ASD-bank) participants.

 Across Subject:
 - From each region-bank, starting from the biggest region level, maintain a subset of regions that has the highest percentage of across-participant agreement on their significance in the region-bank.
 - In each lower region levels (regions with smaller dimensions), maintain a subset of only the green/red regions for which there is a majority agreement on their significance and that fit inside the maintained regions from the previous step.

3. Aggregation of the Residual: Considering the elected regions in each level, only maintain the subset of regions that are not common in both groups.

Following this mechanism, we assessed the between-group differences in resting EEG of ASD and TD participants using the alpha and beta frequency correlation as the feature type of interest to determine if the region-bank was able to identify regionalized differences between ASD and TD, and also male and female participants.

Preliminary Results with Alpha Amplitude Correlation

1. Gender impact:
 - TD: No gender-specific regionalized differences were observed in TD participants.
 - ASD: Regions containing the following electrode clusters were found to be significant but inconsistent across males and females in ASD group. ([E71], [E74], [E98,E102], [E113], [EJS]).

2. Diagnosis:
 - TD vs ASD: Regions containing following electrode clusters were found to be significant but inconsistent across males and females in ASD group. ([E23], [E49], [E113], [E71], [E67,E62,E72]).

3. Diagnosis X Gender impact:
 - a) Inconsistent significant regions across male ASD and TD individuals in alpha amplitude correlation.
 - b) Inconsistent significant regions across female ASD and TD individuals in alpha amplitude correlation.

Figure 1: Inconsistent significant regions identified in (gender x diagnosis) analysis by RegTess in alpha amplitude correlation

3. Preliminary Results with Beta Amplitude Correlation

Preliminary Results with Beta Amplitude Correlation

3.1 Gender impact:
 - TD: The following electrode clusters ([E75,E70], [E100,E108], [E21,E17], [E25]) were marked as inconsistent but significant in second level of the regions size. No gender-specific regionalized differences were observed in TD participants in smaller size regions.
 - ASD: The following regions ([E113],[E106]) and [E11] were found to be significant but inconsistent across males and females in ASD group.

3.2 Diagnosis:
 - TD vs ASD: Regions of [E113],[E71], [E11] were found to be significant but inconsistent across males and females in ASD group.

3.3 Diagnosis X Gender:
 - a) Inconsistent significant regions across male ASD and TD individuals in beta amplitude correlation.
 - b) Inconsistent significant regions across female ASD and TD individuals in beta amplitude correlation.

Figure 2: Inconsistent significant regions identified in (gender x diagnosis) analysis by RegTess in beta amplitude correlation.

Limitations & Conclusions

- RegTess methodology relies on volume conduction of the EEG signal that results in correlated activity from different brain regions. An advantage of this methodology is its ability to identify clusters (n=1 or more) of electrodes that best distinguish groups across experimental conditions or diagnoses. This allows further in-depth analysis of across- and within-subject differences.
- Utilizing p<0.01 as the threshold of significance valid (see algorithm 1) makes the methodology fairly conservative and robust to false positives.
- The current approach is only evaluated on resting EEG data. Further investigation is needed to fine tune the mechanism for between group analysis (e.g., ASD vs TD) and between experimental conditions in task-based paradigms.
- Further analysis is required to evaluate if this approach can be used to pinpoint electrode clusters with significant cross-group ERPs differences over and across paradigms.

References

[3] McPartland Lab, Yale Child Study Center, New Haven, CT Seattle Children’s Innovation & Technology Lab (SCITL), Seattle Children’s Research Institute Department of Pediatrics, University of Washington

[5] McPartland Lab, Yale Child Study Center, New Haven, CT Seattle Children’s Innovation & Technology Lab (SCITL), Seattle Children’s Research Institute Department of Pediatrics, University of Washington