Attention and Brain Response During Simulated Interactions in ASD

Adam Naples, Max Rolison, Jennifer Foss-Feig, Ariel Chang, Katherine Stavropoulos, Tatianna Winkelman, Kayla Stinson, Elzbieta Jarzabek, Kimberly Ellison, Takumi McAllister, James McPartland

Yale Child Study Center, New Haven, CT

Background

- Difficulties with eye-contact, maintaining shared gaze, and following gaze represent some of the earliest occurring symptoms of ASDs. While difficulties with eye-contact are clinically diagnostic, experimental investigations of gaze processing have yielded mixed results.
- Prior research investigating attention to faces and gaze processing in ASD has relied on passive viewing of static or dynamic social information, whereas clinical differences are most apparent in interactive contexts.
- Passive viewing paradigms suggest that variability in attention to the eyes of the face (measured with eye tracking) and temporally early brain response (P100, N170, measured with electrophysiology) are associated with atypical gaze processing in ASD.
- Our objectives were to: (1) investigate neural processing of interactive eye-contact by measuring brain activity in response to direct vs. averted gaze; (2) investigate attention by measuring eye-movements prior to and following interaction with an onscreen face; and (3) evaluate the relationship between neural and attentional markers of interactive eye-contact and clinical characteristics in children with ASD and typical development (TD).

Method

- Participants were presented with 112 face stimuli ordered for low-level visual features and modified such that only the eyes moved in response to gaze.
- Contingent upon participants' fixation on the eyes of the onscreen face, the face responded by shifting eye-gaze (from direct to averted or averted to direct).

Figure 1. Trial Structure. After participants fixated on a crosshair for ~300ms (panel 1), a face with either direct or averted gaze was presented (panel 2). After the participant looked to the eyes for 2500ms, a second face with shifted gaze (panel 3) was presented for 500ms. Inter-trial interval ranged from 200-1200ms.

EEG and ET Data Acquisition and Collection:
- EEG recorded at 1000 Hz with a 128-channel HydroCel Geodesic Sensor net
- ET data collected using an Eyelink-1000 remote camera system

ERP Preprocessing and Analysis:
- Data were filtered from 0.1-100 Hz. Data were then referenced to average reference, segmented from -100-275ms relative to stimulus gaze, baseline corrected, and artifact detected. Trials were excluded from EEG analyses if they contained eye movement exceeding 7.5% of visual angle.
- P100 (80-130ms) and N170 (130-250ms) were extracted from occipitotemporal peaks. Peak amplitude and latency were included as within-subject variables in repeated measures ANOVAs (with group as the between-subject factor), with correlations and t-tests to clarify effects.

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>N</th>
<th>Age</th>
<th>Max Age</th>
<th>Min Age</th>
<th>IQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>male</td>
<td>46</td>
<td>14.02</td>
<td>18.5</td>
<td>8.4</td>
<td>105</td>
</tr>
<tr>
<td>TD</td>
<td>male</td>
<td>23</td>
<td>14.74</td>
<td>18.3</td>
<td>9.6</td>
<td>103</td>
</tr>
<tr>
<td>ASD</td>
<td>female</td>
<td>15</td>
<td>14.23</td>
<td>18.3</td>
<td>9.5</td>
<td>106</td>
</tr>
<tr>
<td>TD</td>
<td>female</td>
<td>17</td>
<td>12.91</td>
<td>16.6</td>
<td>9.0</td>
<td>104</td>
</tr>
</tbody>
</table>

Preliminary Results

- In an interactive paradigm, across participants with ASD and TD, direct gaze elicited greater face specific neural activity (N170) than averted gaze. This finding suggests that reciprocal eye contact recruits greater face-specific brain activity than gaze aversion.
- Increased attention to eyes was associated with faster N170s in the left hemisphere, suggesting that individual differences in looking patterns may be influenced by early social brain activity.
- Typically developing individuals showed larger P100s to reciprocal eye contact, while individuals with ASD exhibited larger P100s to averted gaze. This finding suggests that typically developing individuals may prioritize social aspects of gaze (e.g., mutual eye-contact), whereas individuals with ASD may prioritize more directly functional aspects of gaze, such as directing attention.
- A lack of group differences at the N170 suggests that, for those children with ASD who maintain eye-contact during reciprocal interactions, brain activity is not significant from their typically developing peers.
- While participants were required to look to the eyes of the face, typically developing individuals primarily looked at the right eye of the face (left side on-screen), while individuals with ASD looked significantly more between the eyes of the face. These data suggest that even when instructed to look to the eyes of the face, individuals with ASD exhibit atypical looking patterns.
- Increased attention to the eyes of the face correlated with better social function suggesting that the ability to maintain reciprocal eye-contact in an interactive context is highly correlated with symptom presentation.
- The strong relationship among attention to eyes, social function, and rejected EEG data due to participant eye-movement suggests that: 1) individuals with ASD have difficulty maintaining attention to the eyes of onscreen faces and 2) those individuals with ASD who maintain gaze to the eyes of onscreen faces exhibit better social function.

Figure 2: P100 and N170 response to interactive gaze in children with ASD and TD controls. Both groups showed increased N170s to direct gaze. Individuals with ASD show greater P100 to averted gaze, while TD individuals show greater activity to direct gaze.

Figure 3: Fixation time to regions of the face by group and condition

Figure 4: Electrode recording sites

Figure 5: Continuous relationships between attentional measures and social function (A); Attention to the eyes and EEG data rejection (B); and N170 latency and attention to the left eye (C).

Conclusions

- In an interactive paradigm, across participants with ASD and TD, direct gaze elicited greater face specific neural activity (N170) than averted gaze. This finding suggests that reciprocal eye contact recruits greater face-specific brain activity than gaze aversion.
- Increased attention to eyes was associated with faster N170s in the left hemisphere, suggesting that individual differences in looking patterns may be influenced by early social brain activity.
- Typically developing individuals showed larger P100s to reciprocal eye contact, while individuals with ASD exhibited larger P100s to averted gaze. This finding suggests that typically developing individuals may prioritize social aspects of gaze (e.g., mutual eye-contact), whereas individuals with ASD may prioritize more directly functional aspects of gaze, such as directing attention.
- A lack of group differences at the N170 suggests that, for those children with ASD who maintain eye-contact during reciprocal interactions, brain activity is not significant from their typically developing peers.
- While participants were required to look to the eyes of the face, typically developing individuals primarily looked at the right eye of the face (left side on-screen), while individuals with ASD looked significantly more between the eyes of the face. These data suggest that even when instructed to look to the eyes of the face, individuals with ASD exhibit atypical looking patterns.
- Increased attention to the eyes of the face correlated with better social function suggesting that the ability to maintain reciprocal eye-contact in an interactive context is highly correlated with symptom presentation.
- The strong relationship among attention to eyes, social function, and rejected EEG data due to participant eye-movement suggests that: 1) individuals with ASD have difficulty maintaining attention to the eyes of onscreen faces and 2) those individuals with ASD who maintain gaze to the eyes of onscreen faces exhibit better social function.