The current study investigates:

- Empathy for physical pain in TD adults reveals that autistic traits modulated event-related potential (ERP) markers of empathic processing for both physical and social pain.
- Empathy for social pain mentalizing networks (e.g., dorsomedial prefrontal cortex, insula).
- Enhanced activation in affect-encoding regions during observed physical pain is also seen in highly empathic individuals during empathy for social pain.

Our previous work in TD adults revealed that autistic traits modulated event-related potential (ERP) markers of empathic processing for both physical and social pain:

- P300: an index of cognitive appraisal and stimulus categorization.

Neural markers of empathic response to social pain in ASD remain unexplored.

The current study investigates:

- The temporal dynamics of empathy for physical and social pain in ASD versus TD.
- Relations among neural responses to observed social pain, empathic traits, and social function in ASD.

METHOD

PARTICIPANTS

- 14 TD male adults (2 left-handed)
- 7 male adults with ASD (1 left-handed)

<table>
<thead>
<tr>
<th>Table 1. Participant Demographics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>TD (21) 18-25 27-56 -- --</td>
</tr>
<tr>
<td>EQ Score</td>
<td>122 (3) 19-28 34 (14) 15-54 67 (18) 44-91</td>
</tr>
<tr>
<td>SRS-A-SR Score</td>
<td>M (SD) 22 (3) 19-28 34 (14) 15-54 67 (18) 44-91</td>
</tr>
<tr>
<td></td>
<td>M (SD) 21 (2) 18-25 38 (9) 27-56 -- --</td>
</tr>
</tbody>
</table>

DATA ACQUISITION AND EXTRACTION

- *EEG recorded continuously at 250 Hz*
- *HydroCol Geodesic Sensor Net 128*
- *Data segmented to static image (100 ms pre-stimulus baseline, 550 ms post-stimulus) and average-referenced*
- *Peak amplitude and latency for the N110 (90-170 ms) and P300 (300-550 ms) extracted at C3 and C4 sites*

STATISTICAL ANALYSIS

- Peak amplitude and latency were analyzed using multivariate repeated measures ANOVA.
- 4 within-subjects factors:
 - Type (Social/Physical)
 - Task (Count/Rate)
 - Pain (Painful/Painless)
 - Hemisphere (Left/Right)
- Between-subjects factors:
 - Diagnosis (ASD/TD)
 - Bivariate correlations were computed among amplitude and latency difference scores and behavioral scores.

RESULTS: FIGURES

- **Figure 3. C3 and C4 recording sites**
- **Figure 4a. Waveforms to observe physical and social scenarios (painful and painless) in TD**
- **Figure 4b. Waveforms to observe physical and social scenarios (painful and painless) in ASD**

EXPERIMENTAL DESIGN

- Three experimental manipulations:
 - *Type of stimuli (Social/Physical)*
 - *Pain depicted in stimuli (Painful/Painless)*
 - *Task (Count/Rate)*
- *Task manipulated attention:*
 - Count the bracelets on actors’ wrists (1-4)
 - Rate distress to observed pain (1-4)
- *Four blocks, counterbalanced for sequence:*
 - 60 trials per block (30 painful, 30 painless trials randomized within block)
 - Each trial included a video and a static image depicting the video’s final frame.

RESULTS: SUMMARY

ERPs RESULTS

- *N110 Amplitude: Interaction between Diagnosis and Pain [F(1,19)=9.413, p<.005]*
 - N110 amplitude to painless scenarios in ASD>TD [t(19)=4.038, p<.001]
- *P300 Latency: Interaction of Diagnosis, Type, and Hemisphere [*F(11,39)=9.425, p=.006]*
 - P300 latency to social scenarios longer than to physical scenarios in ASD [t(39)=-2.327, p =.059] but not in TD [t(39)>1, p =.188] in the right hemisphere.
 - Right-hemisphere P300 latency to physical actions in TD>ASD [t(19)>2.791, p=.012]

ERPs-Behavioral correlations

- EQ scores correlate with the difference in P300 amplitude between observed physical and social pain in the right hemisphere across diagnostic categories [r = -.641, p = .002]
 - Higher trait empathy is associated with greater amplitude to social versus physical pain.
- EQ scores correlate with the difference in P300 amplitude between observed socially painful and painless scenarios in the right hemisphere across diagnostic categories [r = .573, p = .007]
 - Higher trait empathy is associated with greater amplitude to socially painful versus painless scenarios.
- SRS-A-SR scores in ASD correlate with N110 amplitude difference between observed physical and social pain during the rating task [r = -.815, p = .030]
 - Higher social function in ASD is associated with greater empathy to social relative to non-social pain in the left hemisphere.

CONCLUSIONS

- ERPs revealed disruption of brain mechanisms regulating affective response to observed pain/lack of pain, as indexed by the N110 component, in ASD.
- During affective stages of empathic processing, enhanced sensitivity to social pain at the N110 was associated with greater overall social functioning in ASD.
- ERPs indicated delayed neural processing of social actions and faster processing of physical actions, as indexed by the P300 component, at cognitive stages of empathic processing in ASD.
- During cognitive stages of empathic processing, self-reported empathy was associated with greater sensitivity to social pain at the P300 component in TD and ASD.

IMPLICATIONS

- The neural response to observed social pain is closely associated with empathic functioning in both typical and atypical development.
- Early emotional response to others’ pain may serve as an indicator for treatment selection and a metric of outcome for social skills interventions in ASD.
- Research in progress in our lab explores the modifiability of this response in children and adults with ASD.

REFERENCES