**Developmental Electrophysiology** Laboratory Yale Child Study Center

### Background

- Electroencephalographic (EEG) peak alpha frequency (PAF) represents a marker of neural maturation<sup>1</sup> that typically increases with age throughout childhood.<sup>2</sup>
- Abnormal maturation of PAF is observed in children with autism spectrum disorder (ASD), and these differences appear to depend upon age.<sup>3</sup>
- In contrast to TD peers, PAF in young children with ASD has been shown to be associated with cognitive ability rather than age.<sup>4</sup>

**Objective:** The current study aimed to clarify and extend previous findings by assessing the effects of age, cognitive ability, and diagnostic status on PAF in a sample of children and adolescents with and without ASD.

### Methods Age in years (SD) Participants (female) range 14.1 (2.4) 54 (15) ASD 9.1 – 17.9 12.9 (2.6) 48 (23) TD 9.0 – 18.0

**Table 1.** Participant demographics.

### **Behavioral Measures**

- ASD diagnoses were confirmed with the Autism Diagnostic Observation Schedule (ADOS-2) and clinician endorsement of DSM-5 criteria for ASD.
- Cognitive ability was assessed with the Differential Ability Scales-II (DAS-II); the special nonverbal composite (SNC) standard score was used as a proxy for nonverbal IQ (NVIQ).
- Autism-specific social impairment was measured with the Social Responsiveness Scale (SRS-2).

### **EEG Acquisition and Analysis**

- Resting EEG data (with eyes closed) was recorded at 1000 Hz with a 128-channel Hydrocel Geodesic sensor net.
- At least 30 seconds of artifact free EEG data were available for each participant.
- Spectral power was extracted from and averaged across occipital electrodes (Figure 1).
- PAF was calculated as the alpha frequency (6 12 Hz) at which power was maximal.

### Statistical Analysis

- An independent samples t-test was used to evaluate between-group differences in PAF.
- Pearson correlations were used to examine bivariate relations between PAF, NVIQ, age, and ASD symptomatology.
- A multiple regression model was used to assess the incremental and joint effects of age, NVIQ, and diagnosis (TD vs. ASD) on PAF.



# Effects of Age and Cognitive Ability on Maturation of **Resting-State Peak Alpha Frequency in Children with Autism**

C. Finn, G. Han, C. Carlos, J. Wolf, A. Naples & J. McPartland

Results

- NVIQ (SD) range 104.1 (15.7) 75 – 137 104.9 (12.8) 83 – 136

Figure 1. Electrodes included in analysis.

- Mean PAF did not differ across TD (M = 9.69, SD = 0.77) and ASD (M = 9.79, SD = 0.75) groups (Figure 2).
- Age was positively associated with PAF in both TD and ASD groups (Figure 3).
- NVIQ was not associated with PAF in either the ASD (r(46) = .112, p > .05) or TD (r(38) = .130, p > .05) group.



Figure 2. Distribution of PAF across ASD and TD groups.

- A multiple regression model with Age, NVIQ, and Diagnosis as predictors significantly predicted PAF (F(7, 80) = 2.78, p = .012,  $R^2 = .196$ ).
- The significant three-way Age x NVIQ x Diagnosis interaction effect (p = **0.045)** indicates that the relationship between NVIQ and PAF:
- Shifts from negative to positive as a function of age in TD children
- Remains stable and slightly positive in ASD irrespective of age.

## Predicted Values of Peak Alpha Frequency



**Figure 3.** Positive relationship between age and PAF across ASD and TD groups.

**Figure 4.** Interactive effects of age, NVIQ, and diagnostic status on predicted values of

- PAF positively was with ADOS-2 associated Restricted and Repetitive Behaviors (RRB) scores in the ASD group (Figure 5).
- PAF was not related to any other measures of ASD symptomatology on the ADOS-2 or SRS-2.

Figure 5. Positive relationship between ADOS RRB scores and PAF.

- groups.
- interaction when predicting PAF in a linear model.
- trajectory of neural maturation.

1. Miskovic, V., Ma, X., Chou, C.-A., Fan, M., Owens, M., Sayama, H. & Gibb, B.E. (2015) Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood. *NeuroImage*, 118, 237–247.

2. Chiang, A. K. I., Rennie, C. J., Robinson, P. A., Van Albada, S. J., & Kerr, C. C. (2011). Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical Neurophysiology, 122(8), 1505-1517.

3. Edgar, J. C., Dipiero, M., McBride, E., Green, H. L., Berman, J., Ku, M., ... & Roberts, T. P. (2019). Abnormal maturation of the resting-state peak alpha frequency in children with autism spectrum disorder. Human Brain Mapping, 40(11), 3288-3298.

4. Dickinson, A., DiStefano, C., Senturk, D., & Jeste, S. S. (2018). Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. *European Journal* of Neuroscience, 47(6), 643-651.

NIMH R01 MH100173 (McPartland), UL1 RR024139 (McPartland), NIMH R21 MH091309 (McPartland), Hilibrand Foundation Postdoctoral Fellowship (Han)





## Conclusions

• Whereas previous studies utilizing younger ASD samples indicated the absence of association between age and PAF<sup>4</sup>, current results indicated that age was positively associated with PAF in both ASD and TD

• Notably, there was a significant 3-way Age x NVIQ x Diagnosis

• The relationship between NVIQ and PAF shifted from negative to positive in the TD group during middle adolescence (13 years old).

• By contrast, the ASD group maintained a stable relationship between NVIQ and PAF throughout adolescence, indicating a different

• Findings underscore the importance of examining resting-state neural rhythms in relation to age and cognitive function to capture sensitive developmental periods of atypical neural maturation in ASD.

### References

### **Funding Sources**

**McPartland Lab** mcp-lab.org mcp.lab@yale.edu

