We want to understand the neural circuits that enable adaptive choice behavior.

Every day we make hundreds of decisions. Should I choose an original glazed or a honey cruller? Should I even eat a donut? Answering such difficult questions relies on processing different types of information, such as sensory cues, past experience, context, and motivational state. When the information or contingencies change, we adapt. The capacity to be flexible in choice behavior is a remarkable and essential part of our cognitive life. By contrast, cognitive rigidity is a core symptom in neuropsychiatric disorders.

We have evidence indicating that prefrontal and higher-order motor cortical areas mediate flexibility. These regions exert executive, rather than direct, control to guide actions. Still unknown, however, are how internal and external information are processed for action control, how choices are represented by neuronal ensembles, and how signals are routed to other brain regions to influence motor output.

We design experiments to answer these questions in mice, leveraging genetic and molecular approaches to identify cellular components of cortical circuits. We train mice to perform tasks requiring adaptive, goal-directed actions. We use a combination of techniques to characterize neural ensemble dynamics, including two-photon calcium imaging, optogenetics, and computational modeling.


We are grateful for support from the NIH, Brain & Behavior Research Foundation, Inscopix, and Epilepsy Foundation.