Current Research

Research Summary

Many pediatric diseases are poorly understood, in part because they involve processes that occur at small, microscopic scales. In addition, the causes often involve small motions and fluid flows. For example, an early embryonic heart has a diameter of about 100 micrometers, which is about the diameter of a human hair. The cilia that move mucus out of our airways are even smaller- about 10 micrometers long. In order to better study pediatric disease at such small scales, we develop innovative optical imaging methods to visualize and quantify disease at these microscopic scales.

We have three areas of active research.

  1. First, we develop new laser sources for microscopy and biological imaging.
  2. Second, using sophisticated optical imaging methods, we study abnormal embryonic heart function in different animal models of human disease, including the tadpole Xenopus tropicalis. In particular, we study the role that specific human genes play in abnormal embryo heart development and physiology.
  3. Third, we are developing imaging methods to better diagnose abnormalities in respiratory cilia function. Since cilia expel mucus that contains allergens, viruses, and bacteria, they are essential to keeping lungs healthy.
The overall impact of our work is two-fold. First, we are developing core optical technologies that may find widespread use in microscopy. Second, our cilia and heart imaging research has the potential to personalize the diagnosis and treatment of a wide-variety of pediatric diseases.