

Protein Post Translational Modification (PTM) & Profiling Core Erol E. Gulcicek

Outline

Determine sites of Post Translational Modifications and changes in their Levels

- Phosphorylation***
- Ubiquitination
- Palmitoylation
- Poster Presentation (TuKiet Lam)
- Glycosylation

New Methods Recently Used at Yale/NIDA Neuroproteomics Center

- Pulsed SILAC (Nairn Lab: Shari Wiseman)
 - Look at differential protein expression rates with or without treatment

- SILAM - Stable Isotope Labeling of Amino acids in Mammals (or Mice) Alexandre Stipanovich, Angus Nairn and Paul Greengard

- A novel tool by which to quantitatively compare proteomes from tissue
- Look at both the protein expression and phosphorylation changes
- WT and CK1Δ overexpressed mice to determine CK1Δ function in striatal brain under *in vivo* conditions:

NIDA Overall PTM Project Base

NIDA Neuroproteomics Protein Post-Translational Modification Identification & Profiling Core Participation						
Investigator	Protein Posttranslational Modifications					
	Phosphorylation	Ubiquitinylation	Palmitoylation	Glycosylation	Others	Project Description
Eipper, Betty	x			x		 Extensive Kalirin7 phosphorylation specific to drugs of abuse phosphorylated by recombinant CaMKII,
Green, William	x		x			-"familial amyotrophic lateral sclerosis(ALS)-linked SOD1 mutants are abnormally palmitoylated".
Greengard, Paul	x					- SILAM - CK1Δ over-expressing mice vs WT mice
Kaczmarek, Leonard	x					- Regulation of Slack channel proteins by phosphorylation sites.
Lombroso, Paul	x	x				- Phosphorylation sites of STEP treated by DHPG of SK-SY5Y cells.
Morabito, Maria	x	x				- Ubiquitination of the PSD-95 protein
Nairn, Angus	x	x			Methylation	 Global Ubiquitination in brain 18 novel phosphorylation sites in the EF2 Kinase (EF2K) Ser499, a site regulated by PKA, playes a causal role in turnover of EF2K. Ser885 of LFC in striatal tissue is regulated by acute exposure to cocaine.
Nestler, Eric	x					 in vitro phosphorylation of ∆FosB by CaMKII in the Nucleus Accumbens Shell"
Picciotto, Marina	x					 nAChR-associated phosphoproteome in smokers vs. non- smoker subjects by IP of several proteins
Taylor, Jane	x					 phosphorylation changes induced by chronic corticosterone exposure in adolescence, indicative of increased risk for developing addictive behaviors.
Tomita, Susumu	x					- identify and quantitate phosphorylation levels of purified TARP g-8 from rodent brain

Phosphopeptide Enrichment - Necessary Step for Differentially Determining Phosphorylation Sites

MS Analysis Requires Phosphopeptide Enrichment

Ser/Thr phosphorylation – TiO₂ enrichment Tyr phosphorylation – Phospho-Tyr Antibody

NIDA Investigators utilizing PTM Core for phosphorylation:

Eipper, Betty DeCamilli, Pietro Green, William Greengard, Paul Kaczmarek, Leonard Lombroso, Paul Morabito, Maria Nairn, Angus Nestler, Eric Picciotto, Marina Sathyanesan, Samuel Taylor, Jane Tomita Susumu

Locating sites of phosphorylation in Kalirin-7

Kalirin-7 participates in the formation and maintenance of dendritic spines
Kal7 has long been implicated in long term potentiation, fear memories, and addiction like behaviors

NIDA Investigator: Betty Eipper - More this afternoon

Yale NIDA Proteomics Center

ase see to Lattis Poster for more de

Cyclin-Dependent Kinase 5 Regulates PSD-95 Ubiquitination in Neurons

Michael J. Bianchetta,¹ TuKiet T. Lam,² Stephen N. Jones,¹ and Maria A. Morabito¹

¹Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and ²W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut 06511

Stable isotope labeling with amino acids in cell culture (SILAC) Sample processing using Analysis and the Mascot Quantitation tool box

Use of "Pulsed SILAC" to determine Differential Protein Expression Rates

HSP 70

Elongation Factor 2

SILAC Mouse – Studies of CK1delta overexpression in forebrain

Project with Greengard and Nairn Labs

- Study the role of CK1 δ :
- a kinase found to influence dopamine signaling and sensitivity to amphetamine when overexpressed in the mouse forebrain

(Zhou et al. Proc Natl Acad Sci U S A. 2010 107:4401-6. "Forebrain overexpression of CK1delta leads to down-regulation of dopamine receptors and altered locomotor activity reminiscent of ADHD")

SILAM - <u>S</u>table <u>I</u>sotope <u>L</u>abeling of <u>M</u>ammals (or SILAC Mouse)

Tissue Extraction Isolate mouse striatum

Mouse generation based on: Kruger et. al., "SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function, Cell, (134), 353-364

Normalize protein in lysate

Phosphopeptide vs Protein Ratios

Conclusion

- Phosphorylation of Kal 7 as Potential PSD Signaling Hub
- Reduced Cdk5 activity promotes PSD-95 ubiquitination
- New Methods Recently Used at Yale/NIDA Neuroproteomics Center

Pulsed SILAC

A new quantitative technique for looking at PTM and expression level differences

SILAM - Stable Isotope Labeling of Amino acids in Mammals (Mice): quantitatively compare proteomes from forebrain of WT (light) and CK1 Δ (heavy) overexpressed mice to determine CK1 Δ function under *in vivo* conditions:

Acknowledgements

NIH-NIDA Neuroproteomics Funding

DA 018343

Keck Laboratory

Ken Williams Kathy Stone Tukiet Lam Chris Colangelo Can Bruce Jean Kanyo Mary Lopresti Kathrin Wilczak

NIDA Neuroproteomics Leadership

Ken Williams Angus Nairn

Rockefeller University Alexandre Stipanovich

