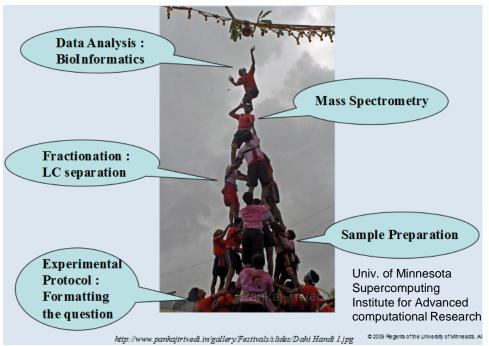


Protein Identification & Protein Profiling in the Neuroproteome Kathy Stone

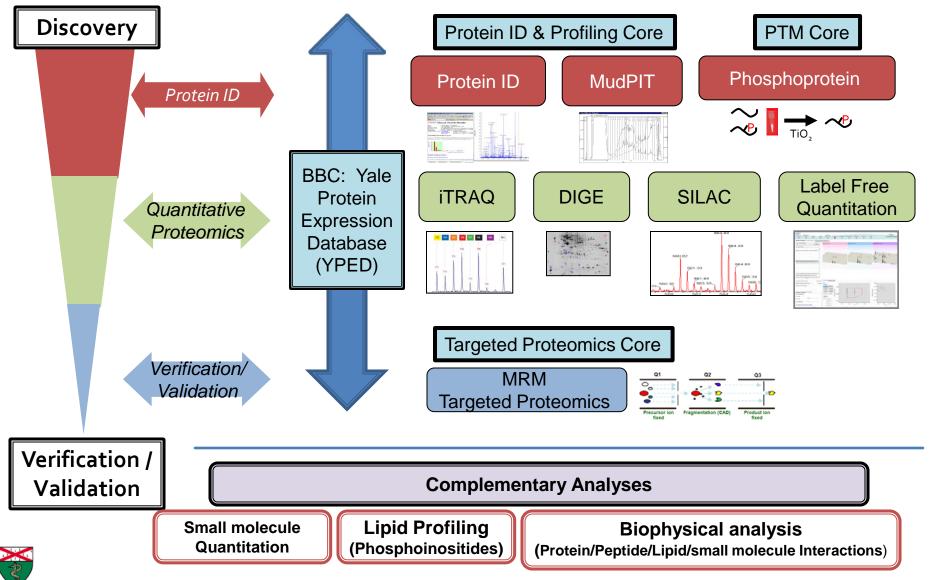
Overview of the Neuroproteomics Cores Synergy

Protein Profiling and Identification, Biophysics, and Phosphoinositide Analysis Core
Protein Post-Translational Modification Identification & Profiling Core (PTM-core)

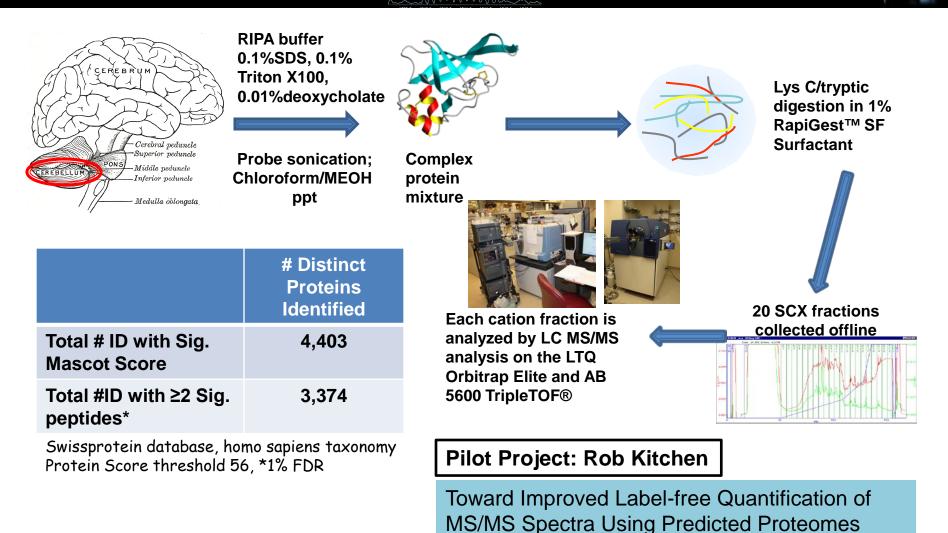

Targeted Proteomics Core

>Bioinformatics and Biostatistics Core (BBC)

The synergy propels the Center forward in going from Discovery to verification/validation of biomarkers of drug addiction.


Projects overview

Complex proteome analyses
Human cerebellum
Choroid plexus
Protein Profiling
iTRAQ
DIGE
Label Free Quantitation
(LFQ)
SILAC/SILAM



Proteomic Discovery to Verification / Validation

Protein Identification: Mapping the human cerebellum proteome

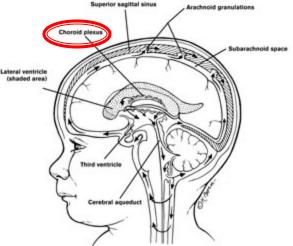
N S S

Yale NIDA Proteomics Center

Based on Second-generation RNA Sequencing

Mapping of the Rat Choroid Plexus (CP) Proteome

 CP has been implicated as a target site for brain drug delivery*
By mapping the Rat CP proteome, we hoped to gain insight on the CP function


> over 1,400 proteins were identified
with ≥2 Significantly identified peptides
(Mascot protein score = 32)

Citation: Translational Psychiatry (2012) **2**, e139; doi:10.1038/tp.2012.64 Published online 10 July 2012

A molecular characterization of the choroid plexus and stress-induced gene regulation

M Sathyanesan¹, M J Girgenti¹, M Banasr¹, K Stone², C Bruce², E Guilchicek², K Wilczak-Havill², A Nairn^{1,2}, K Williams², S Sass³, J G Duman³ and S S Newton¹

The molecular functions associated with various proteins of the CP proteome indicate that it is a blood–cerebrospinal fluid (CSF) barrier that exhibits high levels of metabolic activity.

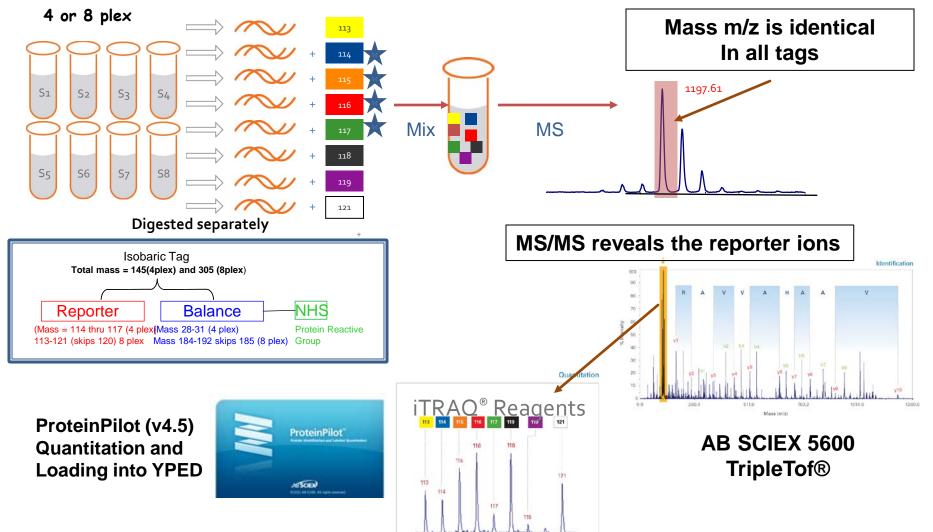
Pilot Project: Sam Sathyanesan

Development of Cerebrospinal Fluid Markers for Neuropsychiatric Disorders

*Duncan et. al, Pharm Res 2005;22:1011-1037

Protein Profiling

Commonly utilized Protein Profiling Techniques


	DIGE	iTRAQ	SILAC	Label Free Quantitation
labeling	chemical	chemical	metabolic	None
Quantitation	protein	peptide	peptide	Peptide
# of samples compared	2 with 1 internal standard	8	2	Unlimited #
Sample amount	50-100µg	25-50µg	?	1µg
Sample type	Any (cells, tissue, biological fluids)	Any (cells, tissue, biological fluids)	Cells only	Any (cells, tissue, biological fluids)
PTM analysis	Yes	difficult	yes	Yes with fractionation
challenges	Very acidic, basic, large or small MW proteins may be lost	Labeling efficiency and buffer composition	Only suitable for cells	Data analysis

DIGE=2D differential gel electrophoresis iTRAQ=isobaric tags for relative quantitation SILAC=stable isotopic labeling by amino acids in cell culture

Multiplex protein Quantitation using iTRAO[®] 4 and 8plex

iTRAQ Analysis: WT vs neuronal nicotinic acetylcholine receptor Knockout

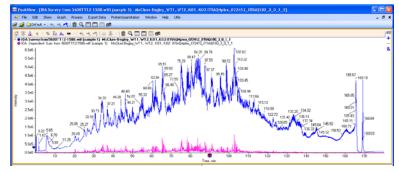
Background

>Neuronal Nicotinic acetylcholine receptors containing $\alpha 4$ and $\beta 2$ subunits are the principal receptors in the mammalian central nervous system that bind nicotine with high affinity

These receptors are involved in nicotine dependence, mood disorders, neurodegeneration and neuroprotection

GOAL: use iTRAQ to understand their protein:protein interactions

Experiment


Mouse alpha4 WT and KO plus
(1) or minus (2) amine-reactive crosslinker prior to an IP

≻4 plex

WT1=114 KO1=116 WT2=115 KO2=117

Pilot Project: Tristan McClure-Begley

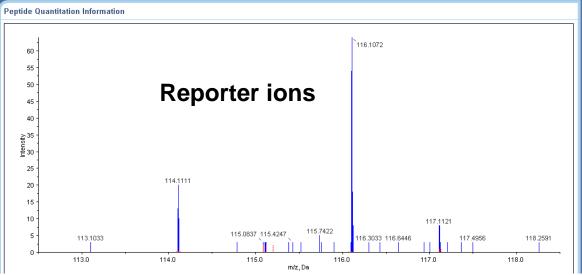
YPED

ITRAQ4plex Results for Sample: A4 4-plex WT/KO ProGroup UniSwiss

Execution	Date	Program Version	on		D	atabase		Searcl	h Engine			
27 Jul 2012 10:39 ProteinPilot 4.0						niSwiss	ProGroup					
Summary	Statistics Protein Score >	=2					A4 4-pl	ex WT/KC	ProGrou	ıp		
#of protein	ns with 1 peptide identified	1					82					
#of protein	ns with >= 99% confidence	e (protein score 2.	0)				151					
#of protein	ns with >= 95% confidence	e (protein score 1.	3)				158					
#of protein	ns with >= 90% confidence	e (protein score 1.	0)				161					
Range of	115:114 ratios						0.0103	- 23.7684	ļ			
Range of 1	116:114 ratios						0.2168	- 14.9968	3			
Range of 117:114 ratios							0.0108	- 69.1831				
Ratio					115:114	116:114	L	117	117:114			
Observed	Bias Correction				1	1		1	1			
View Fals	AQ Sample Information se Positive Analysis		-Se	ther Summary lect-			-			Cutoff 1.5		
	ns found, displaying 1 to 20.] 1, <u>2</u> , <u>3</u> , <u>4</u> , <u>5</u> , <u>6</u> , <u>7</u> , <u>8</u> [Next/L	ast]										
Protein F Score	Protein ID	≑ <u>Protein Name</u>	÷	Percent Coverage	# Distinct Peptides in Ratios	<u>115:114</u> ratio	115:114 P value		116:114 P value	<u>117:114</u> ratio	<u>117:1</u> P val	
36.23 <u>N</u>	IFM MOUSE	Neurofilament medium polypept OS=Mus musculi		34.91	<u>8</u>	0.4571	0.4847	3.8371	0.0086	0.0457	0.005	

Defining the nAChR Interactome

iTRAQ Results: 1 peptide from the identified Neurofilament medium polypeptide protein


			Pr	otein C	luant			Pr	otein ID				Spectr	а		
Pro	otei	ns Detec	:te d											Results a	are 'Manual' bias cor	recti
	N	Unused	Total	% Cov	Accessio		Name	Δ.	Species	Peptides(95%)	115:114	116:114	117:114	Biological Processes	Molecular Functions	P
	122	3.66	7.70	20.8	tr F7A3A	Neurofilament heavy	polypeptide OS=Mus m	usc	MOUSE	5	0.0109	3.0200	0.0175			
	32	19.99	25.33	40.0	sp P0855	Neurofilament light p	olypeptide OS=Mus mus	scul	MOUSE	22	3.4041	4.7424	1.4191			
	14	36.23	36.28	34.9	sp P0855	Neurofilament mediu	m polypeptide OS=Mus	mu	MOUSE	24	0.4571	3.8371	0.0457			
	33	19.90	20.03	21.9	tr B1AQX	P140 gene OS=Mus	musculus GN=Srcin1 P	E=4	MOUSE	11	0.0112	2.7290	0.0108			

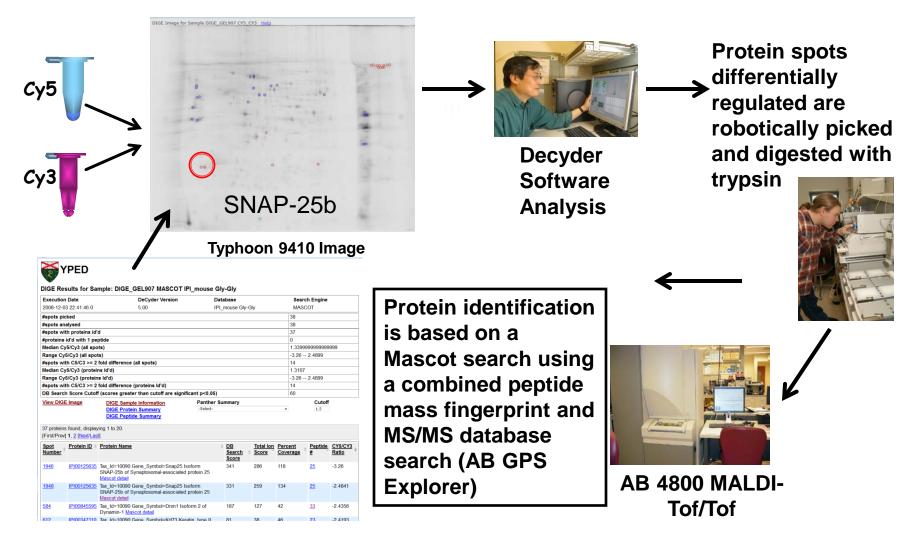
Peptide Quantitation

Jsed 🛆	Annotation	Conf	Sequence 🛆	Modifications	Cleavages	∆Mass	Theor m/z	Theor z	Spectrum 🗠	115:114	116:114	117:114
1	auto	85	FEEEAR	iTRAQ4plex@N-term		-0.0036	462.7308	2	1.1.1.1813.4	0.0000	0.0000	0.0000
1	auto	99	LRDDTEAAIR	iTRAQ4plex@N-term	missed R-D	-0.0029	435.2411	3	1.1.1.2115.5	0.0000	0.0000	0.0000
V	auto	90	LTEANEQUI	iTRAQ4plex@N-term iTRAQ4plex(K)@9		0.0318	431.2414	3	1.1.1.1968.4		1,0000	
V	auto	(93	SPVEEVKPKPEAK	iTRAQ4plex@N-term iTRAQ4plex(K)@7 iTRAQ4plex(K)@9 iTRAQ4plex(K)@13		0.0026	504.3062	4	1.1.1.2116.5		3.3434	0.1275
1	auto	99	VQSLQDEVAFLR	iTRAQ4plex@N-term		0.0043	774.9288	2	1.1.1.3301.7	0.5256	1.4432	
	auto - discor	99	A0V0LDSDHLEEDIHR	iTRAQ4plex@N-term		0.0052	513.0084	4	1.1.1.2594.7			

ProteinPilot [™]Report

Identified peptide

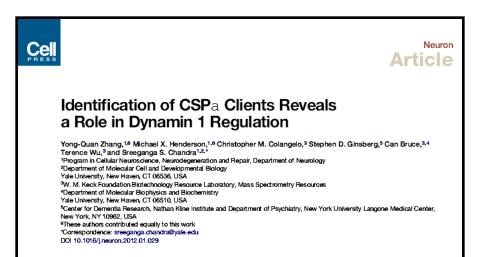
Only the WT 114 and 116 Have reporter ions – the KO (115 and 117)was not visible

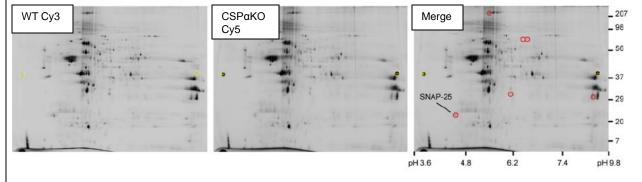

 the ratios of proteins associated with
Neuronal Nicotinic acetylcholine receptors are decreased in KO

Yale NIDA Proteomics Center

Manuscript in preparation

DIGE Protein Profiling and Protein Identification Workflow

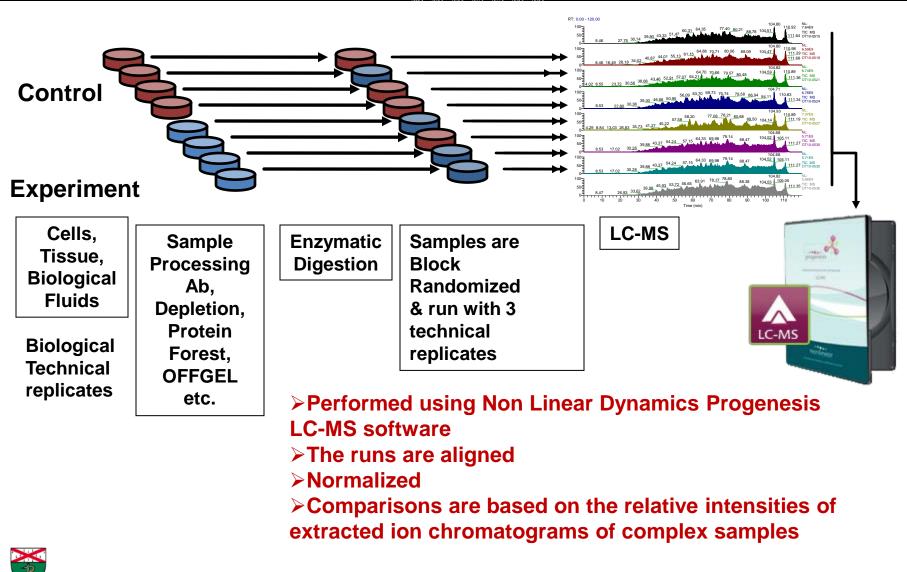



Proteomic Analysis for identification of Cysteine string protein α (CSPα) protein clients

>Utilized DIGE & iTRAQ protein profiling techniques

 located 22 proteins that are selectively decreased in CSPα knockout synapses
includes two that bind to the CSPα chaperone, SNAP-25 and GTPase dynamin 1.

DIGE proved to be effective in determining the proteins that were changing expression between the WT and KO (13 gels used)



Pilot Project: Sreeganga Chandra

Phosphoinositides, Synaptic Signaling, Drug Addiction, and Neurodegeneration

			2	
1. The second se		3		8
2				
	1	1	1	A.

Condition	control S1, S2, S3	Extinction S4, S5, S6	Reconsolidation S7, S8, S9
Replicates	8	7	8

Experiment: compared control vs extinction or reconsolidation of memories associated with cocaine self-administration in rats.

Protein building options

Proteins

Experiment Design

Protein grouping Group similar proteins Protein quantitation Using only features with no protein conflicts

Accession	Peptides	Score	Anova (p)	Fold	Tags	Description	Average Normalised Abundances				
			*				control S1, S2, S3	Extinction S4, S5, S6	Reconsolidation S7, S8, S9		
ATPA_RAT	10	496.18	0.04	7.31		ATP synthase subunit alpha, mitochondrial OS=Rattus	1.56e+005	1.57e+005	1.14e+006		
ATPB_RAT	10	485.54	8.46e-003	47.59		ATP synthase subunit beta, mitochondrial OS=Rattus	2.16e+004	2.50e+004	1.03e+006		
HBA_RAT	6	470.83	0.25	5.47		Hemoglobin subunit alpha-1/2 OS=Rattus norvegicus GN=Hba1 PE=1 SV=3	8.23e+005	8.65e+005	4.50e+006		
<u>SPTN1_RAT</u>	15	464.27	0.23	1.22		Spectrin alpha chain, non-erythrocytic 1 OS=Rattus norvegicus GN=Sptan1 PE=1 SV=2	1.26e+006	1.33e+006	1.09e+006		
RTN1_RAT	8	436.97	0.04	1.27		Reticulon-1 OS=Rattus norvegicus GN=Rtn1 PE=2 SV=1	9.62e+006	1.22e+007	9.84e+006		
NCAM1_RAT	6	423.96	0.16	1.17		Neural cell adhesion molecule 1 OS=Rattus norvegicus GN=Ncam1 PE=1 SV=1	9.23e+006	1.08e+007	9.25e+006		
ODPA_RAT	14	411.81	0.16	1.22		Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Rattus norvegicus GN=Pdha1 PE=1 SV=2	6.83e+006	8.32e+006	7.91e+006		
STX1A_RAT	5	410.34	1.39e-003	1.89		Syntaxin-1A OS=Rattus norvegicus GN=Stx1a PE=1 SV=1	4.35e+006	5.29e+006	2.80e+006		
CXA1_RAT	21	408.07	0.14	1.19		Gap junction alpha-1 protein OS=Rattus norvegicus GN=Gja1 PE=1 SV=2	1.14e+007	9.96e+006	1.19e+007		
SCG2_RAT	10	408.00	0.61	1.13		Secretogranin-2 OS=Rattus norvegicus GN=Scg2 PE=2 SV=1	4.50e+006	4.07e+006	4.59e+006		

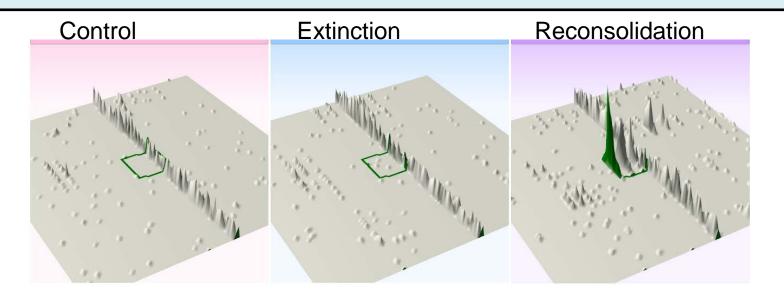
ATP Synthase subunit beta

Shows up regulation In the reconsolidation

Pilot Project: Mary Torregrossa

Identification of Proteins that are Differentially Activated by Drug Cue Memory Extinction and Reconsolidation in the Amygdala and Nucleus Accumbens using Phosphoproteomics

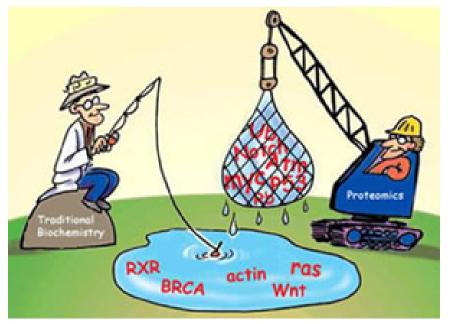
3D Montage View of an ATP synthase subunit beta peptide



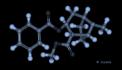
 The Montage view can be used to verify a peptide change
This shows one peptide: m/z=594.3253, triply charged, mass MH+= 1780.954

Sequence identified : IMNVIGEPIDERGPIK

Peptide score:45.6


Fold change = 1.03e+4

Summary


protein profiling: Allows one to find differences in sample spectra very quickly using a small amount of material. When those differences are noted, one may proceed to identify and purify larger amounts of material using other types of array. This material can then be used to characterize the protein and assays can be developed for research or diagnostic purposes.

W. Andy Tao, Purdue University

(http://www.genomicglossaries.com/co ntent/ex_bio.asp)

Acknowledgements

Keck Facility Ken Williams **Terence Wu** Mary LoPresti Jean Kanyo **Chris Colangelo Erol Gulcicek** Tom Abbott **TuKiet Lam** Ted Voss Kathrin Wilczak Kathy Stone

<u>BBC</u> Mark Shifman Kei Cheung Can Bruce Lisa Chung

Investigators Rob Kitchen Sam Sathyanesan Sreeganga Chandra Mary Torregrossa

