Lawrence Baruch Cohen PhD

Professor of Cellular and Molecular Physiology; Principal Scientist, Korea Institute of Science and Technology

Research Interests

Brain; Central Nervous System; Neurons; Vertebrate Physiology; Olfaction; Olfactory Bulb; Protein Sensors of Voltage and Calcium

Current Projects

One active area is development of protein sensors of membrane potential. At present the voltage signals are either to slow or too small. We hope to fine a sensor that is both fast and has a large signal.

A second area is understanding the role of the mammalian olfactory bulb in olfactory processing. We want to know what the interneurons do and we want to compare the input (now well known) with the output (now a black hole).

Research Summary

One reason the brain is difficult to study is that many individual neurons or brain areas are active at once; conventional techniques allow one to monitor only one or a few neurons or locations at a time. We have worked on two variations of an optical method for measuring brain activity; both utilize voltage-sensitive or Calcium-sensitive dyes and a fast camera with frame rates of 1 kHz or a 2-photon microscope. In the first variation, we use the dyes and a 2-photon microscope to follow the spike activity of individual neurons, and in favorable preparations about 500 individual neurons can be monitored simultaneously. We hope that monitoring many neurons simultaneously will improve our understanding about how nervous systems are organized to generate behaviors. In the second variation, each pixel in the recording receives light from a large number of neurons and processes (e.g. from an area of cortex 20 um x 20 um) and thus each signal represents the average of a population of neurons. There are several interesting aspects of vertebrate brain function where populations are involved.


Selected Publications

  • Homma, R., Y. Kovalchuk, A. Konnerth, L.B. Cohen, and O. Garaschuk. (2013) In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb. Frontiers in Neural Circuits, 7:23. doi: 10.3389/fncir.2013.00023.
  • Jin, L., Han, Z., Platisa, J., Wooltorton, J.R.A., Cohen, L.B., and Pieribone, V.A., (2012) Single action potentials and subthreshold electrical events visualized in neurons using a novel fluorescent protein voltage sensor. Neuron, 75: 779-785. PMC3439164.
  • Vucinic D, Cohen LB, Kosmidis EK. Presynaptic centre-surround inhibition shapes odorant evoked input to the mouse olfactory bulb in vivo. J Neurophysiol, 95:1881-1887, 2006.
  • Wachowiak M, Cohen LB. Correspondence between odorant-evoked patterns of receptor neuron input and intrinsic optical signals in the mouse olfactory bulb. J Neurophysiol, 89(3):1623-39, 2003.
  • Lam YW, Cohen LB, Zochowski MR. Odorant specificity of three oscillations and the DC signal in the turtle olfactory bulb. Euro J Neurosci, 17(3):436-46, 2003
  • Homma R, Cohen LB, Kosmidis EK, Youngentob SL. Perceptual stability during dramatic changes in olfactory bulb activation maps and dramatic declines in activation amplitudes. Euro J Neurosci, 29:1027-1034, 2009.
  • Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Meth, 161:32-38, 2007.

Edit Profile