Linda Kathryn Bockenstedt MD

Harold W. Jockers Professor of Medicine (Rheumatology); Associate Dean, Faculty Development and Diversity

Research Interests

Pathogenesis of Lyme disease; Tick-borne infections; Innate immunity; Multiphoton imaging; Faculty development in context of team science

Current Projects

1. Real-time intravital microscopy of Borrelia burgdorferi infection in mice
This project is using multiphoton microscopy to define in real-time spirochete interactions between the feeding tick and the mammalian host, including modes of spirochete dissemination from the skin and evolving host immune responses.
2. Biophysical properties of Borrelia burgdorferi outer surface membrane
This collaborative project with Dr. Eric Dufresne (Yale Dept. of Engineering) employs optical tweezer technology and speckle microscopy to measure Borrelia burgdorferi outer membrane protein mobility and the relationship to directional forces exerted by spirochetes when trapped at one end.
3. Cutaneous host immune response to Borrelia burgdorferi.
This project seeks to understand the skin immune response to tick feeding and tick-introduced pathogens.
4. Development of improved diagnostic tests for Lyme disease
These projects, performed in collaboration with L2 Diagnostics, seek to develop improved diagnostic tests for Lyme disease based on in vivo expressed Borrelia burgdorferi proteins.
5. Innate immune pathways in elderly and immunosuppressed populations
This contract with Drs. Fikrig and Montgomery will analyze human innate immune cell function in aging and medication-induced immunosuppression and identify critical pathways and mechanisms that mediate impaired/dysregulated immune responses in the elderly and immunosuppressed populations.

Research Summary

My laboratory studies the pathogenesis of Lyme disease, a tick-borne infection with the spirochete Borrelia burgdorferi. We use the murine model of Lyme borreliosis to investigate the host immune response to the spirochete and mechanisms by which the spirochete persists in the host. Using molecular genomic, proteomic and imaging approaches, we are studying 1) spirochete interactions with ticks and host tissues in vivo in real-time; 2) mechanisms of spirochete evasion of innate and adaptive immune defenses, including biophysical studies of the spirochete; and 3) protein profiles of spirochetes during acute and chronic infection for improving diagnostic tests.

Extensive Research Description

Lyme borreliosis is an infectious disease caused by the tick-transmitted spirochete Borrelia burgdorferi. Since its recognition in the United States in the early 1970’s, it has emerged as the most common vector-borne disease in North America and a significant health care concern, with nearly 30,000 confirmed new cases in 2009. The infection can present with a localized skin rash at the site of tick bite or with involvement of other organ systems, especially the heart, joints and nervous system. Although the infection is highly responsive to antibiotic therapy when detected early, the time to symptom resolution may be protracted. A delay in diagnosis can result in disease manifestations, such as arthritis, that persist despite antibiotics effective at earlier stages of the illness.

My laboratory used the murine model of Lyme borreliosis to study the host immune response to B. burgdorferi in an effort to understand factors that influence clearance of the organism and disease expression. Our published work has demonstrated the importance of innate immunity, especially phagocytes and T cell independent antibody, in control of pathogen burden and the role of IgG subtypes and Fc receptors in severity of arthritis. Through imaging modalities, we have begun to dissect the role of spirochete motility and fluidity of its outer membrane in evasion of the innate and adaptive immune responses. In collaboration with Dr. Eric Dufresne (Yale Department of Engineering), we are using optical tweezers and speckle microscopy to measure the mobility of proteins in the spirochete outer membrane and the consequences of membrane fluidity on the ability of phagocytes to capture and ingest B. burgdorferi. In vivo, we are using multiphoton microscopy to measure in real time the speed and motility patterns of spirochetes as they move between the tick and the mammal, and the requirement for select B. burgdorferi proteins in this process. Using this system, we have also shown that the vast majority of spirochetes are eliminated within the first few days of antibiotic therapy for disseminated Lyme borreliosis, but antigenic debris can persist in tissue adjacent to cartilaginous structures. Our current studies are designed to investigate the duration of persistence of this debris and the potential for it to incite inflammation, which may contribute to persistent symptoms after treatment for Lyme disease.

In addition to pathogenesis studies, we are also working in conjunction with L2 Diagnostics, Inc., to improve the diagnosis of Lyme disease. We have identified panels of B. burgdorferi antigens expressed at early and late stages of infection that are underrepresented in lysates of cultured spirochetes, which are the substrates of current serologic tests for Lyme disease. These antigens are being evaluated for use as new antigens for diagnosing Lyme disease and for evaluating response to therapy.


Selected Publications

  • L.K. Bockenstedt, D. Gonzalez, A. Haberman, and A.A. Belperron. Spirochete antigens persist by cartilage after murine Lyme borreliosis therapy. J. Clin. Invest. 2012, 122(7):2652-2662. PMCID:PMC3386809.
  • Harman, M.W., S.M. Dunham-Ems, M.J. Caimano, A.A. Belperron, L.K. Bockenstedt, H.C. Fu, J.D. Radolf, and C.W. Wolgemuth. The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl. Acad. Sci. USA 2012, 109(8): 3059-64. PMCID: PMC3286914
  • Qian, F., X. Wang, L. Zhang, S. Chen, M. Piecychna, H. Allore, L.K. Bockenstedt, S. Malawista, R Bucala, A.C. Shaw, E. Fikrig, and R.R. Montgomery. Age –associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell 2012, Feb 11(1):104-110. PMCID:PMC3257374.
  • Bandyopadhyay, A., R.L. Fine, S. Demento, L.K. Bockenstedt, and T. Fahmy. The impact of nanoparticle ligand density on dendritic cell targeted vaccines. Biomaterials. 2011, 32:3094-3105.
  • Liu N, AA Belperron, CJ Booth, LK Bockenstedt. The caspase 1-inflammasome is not required for control of murine Lyme borreliosis. Infect Immun. 2009, 77:3320-3327. PMCID: PMC2715671
  • Vesely, D.L., D. Fish, M. Shlomchik, D.H. Kaplan, and L.K. Bockenstedt. (2009). Langerhans cell deficiency impairs Ixodes scapularis suppression of Th1 responses in mice. Infect. Immun. 77:1881-1887. PMCID: PMC2681756
  • Belperron, AA, CM Dailey, CJ Booth, and LK Bockenstedt (2007) Marginal zone B-cell depletion impairs murine host defense against Borrelia burgdorferi infection. Infect. Immun. 75:3354. PMCID: PMC1932939
  • Belperron AA, CM Dailey, and LK Bockenstedt (2005) Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174:5681.
  • Liu N, RR Montgomery, SW Barthold, LK Bockenstedt (2004) Myeloid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi-infected mice. Infect Immun 72:3195. PMCID: PMC415708
  • Bockenstedt LK, J Mao, E Hodzic, SW Barthold, D Fish (2002) Detection of attenuated, non-infectious spirochetes after antibiotic treatment of Borrelia burgdorferi infected mice. J Infect Dis 186:1430-7

Edit Profile