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ABSTRACT:  26 

 27 

Pulmonary hypertension describes a heterogeneous disease defined by increased pulmonary 28 

artery pressures, and progressive increase in pulmonary vascular resistance due to pathologic 29 

remodeling of the pulmonary vasculature involving pulmonary endothelial cells, pericytes, and 30 

smooth muscle cells.  This process occurs under various conditions, and though these 31 

populations vary, the clinical manifestations are the same: progressive dyspnea, increases in right 32 

ventricular (RV) afterload and dysfunction, RV-pulmonary artery uncoupling, and right-sided 33 

heart failure with systemic circulatory collapse. The overall estimated 5-year survival rate is 72% 34 

in highly functioning patients, and as low as 28% for those presenting with advanced symptoms. 35 

 36 

Metabolic theories have been suggested as underlying the pathogenesis of pulmonary 37 

hypertension with growing evidence of the role of mitochondrial dysfunction involving the major 38 

proteins of the electron transport chain, redox-related enzymes, regulators of the proton gradient 39 

and calcium homeostasis, regulators of apoptosis and mitophagy. 40 

 41 

There remain more to characterize in mitochondrial dysfunction leading to impaired vascular 42 

relaxation, increase proliferation, and failure of regulatory mechanisms. The effects on 43 

endothelial cells and resulting interactions with their microenvironment remain uncharted 44 

territory for future discovery. Additionally, based on observations that the “Plexigenic lesions” 45 

of pulmonary hypertension resemble the unregulated proliferation of tumor cells, similarities 46 

between cancer pathobiology and pulmonary hypertension have been drawn, suggesting 47 

interactions between mitochondria and angiogenesis. Recently, mitochondria targeting has 48 

become feasible, which may yield new therapeutic strategies. We present a state-of-the-art 49 

review of the role of mitochondria in both the pathobiology of pulmonary hypertension and 50 

potential therapeutic targets in pulmonary vascular processes. 51 

 52 

  53 
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Our current understanding of Pulmonary Hypertension 54 

 55 

The first pathological description of pulmonary arterial hypertension (PAH) was described in a 56 

German publication in 1891. The article titled On Sclerosis of the Pulmonary Artery:  From the 57 

Medical Clinic of Leipzig, described the autopsy findings of patients who suffered from a 58 

constellation of progressive dyspnea, cyanosis, fatigue, and ultimately heart failure with “general 59 

hydrops” (generalized edema)(136). Pathologically, the patients all had enlarged right ventricles 60 

and pulmonary arteries with notable “congestion”.  It was not until 50 years later, however, that 61 

the hemodynamic implications of these pathological findings would truly be known, with the 62 

development of right heart catheterization(115). In 1951, the first article fully describing the 63 

clinical entity of pulmonary hypertension (PH), as we understand it today, was published(39). 64 

This allowed for a greater understanding of the pre-mortem features of PH.  In 1973, the World 65 

Health Organization (WHO) recognized three specific categories or etiologies of PH based on 66 

additional pathological data(73), and fourteen years later the first series was published(51).  67 

 68 

Currently, we recognize five categories of patients with PH, defined as “groups” by the WHO. 69 

These groups have been periodically updated as our understanding of the underlying mechanisms 70 

expands. PH is now defined by both hemodynamic measures and pathological findings, 71 

unchanged from 70 years ago when first described by Dresdale et al. Hemodynamically, PH is a 72 

mean pulmonary artery pressure > 25 mmHg at rest.  This basic hemodynamic measure applies 73 

to all five WHO groups. PAH, which is a subgroup of PH and is WHO group 1 PH, is 74 

characterized in addition by a normal pulmonary artery wedge pressure (<15 mmHg) and a 75 

pulmonary vascular resistance >3.0 Wood units (>240 dynes•sec•cm
-5

).  76 

 77 

Pathologically, there is greater variation amongst the different WHO groups. Classically, WHO 78 

group 1, which includes idiopathic PAH, is characterized by hypertrophic pulmonary artery 79 

remodeling with arteriolar muscularization, intimal fibrosis, and in-situ thrombosis with 80 

neovascularization and occasionally the presence of “plexiform” lesions. In WHO group 1 PH, 81 

these hypertrophic and plexigenic lesions lead to increased vascular resistance within the 82 

pulmonary system, and ultimately to maladaptive responses of the right ventricle to an increased 83 

pressure load. In this category, what remains unknown is exactly what mechanism initiates the 84 

maladaptive response of the vasculature. 85 

 86 

Historic Mechanisms of Pulmonary Hypertension 87 

 88 

PH was considered as a disease of vascular sclerosis and vasoconstriction (arteriolar 89 

muscularization), possibly due to “vascular hyperreactivity”, and frequently complicated by 90 

thrombotic disease, leading to increased vascular resistance throughout the pulmonary system. It 91 

was suggested that the protective mechanism of transient hypoxic pulmonary vasoconstriction 92 

was dysregulated or constitutively active, leading to remodeling, and thus the phenotype 93 

described above(51). As such, the first mechanisms underlying PH to be studied involved 94 

vasoactive pathways within the vasculature. These early studies led to the vast majority of 95 

available therapies, namely Endothelin-1, Nitric oxide (NO), and Prostacyclin pathways.  96 

 97 

The first and most potent vasodilator of the vascular smooth muscle to be discussed is NO.  98 

Originally termed “endothelial derived relaxing factor” by Furchgott et al.(50), this vasoactive 99 
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compound is synthesized by NO synthase in endothelial cells (eNOS), which is then secreted as a 100 

dissolved gas to be taken up by nearby vascular smooth muscle cells (SMCs). Within SMCs, NO 101 

increases production of cGMP via activation of soluble guanylate cyclase (sGC), which in turn 102 

decreases calcium influx, thus promoting relaxation of the SMC and vasodilation when in 103 

concert with other surrounding SMCs. This effect on cGMP also leads downstream to decreased 104 

DNA synthesis, thus inhibiting proliferation of SMCs. Patients with PAH have been found to be 105 

deficient in NO and its downstream products (83).  Low NO is potentially due to inactivation of 106 

eNOS by aberrant phosphorylation in vascular endothelial cells(56).  Several therapeutic options 107 

specifically address these deficiencies by delivering NO directly to the lungs via inhalation, or by 108 

increasing its downstream effector molecule cGMP either via decreased breakdown 109 

(phosphodiesterase inhibitors)(81), or via upregulation by stimulating soluble guanylate 110 

cyclase(55).  111 

 112 

Similar to NO, another important pulmonary vasodilator is the prostaglandin PGI2 or 113 

prostacyclin. This product of the arachidonic acid pathway is synthesized in the endothelium in 114 

response to vascular injury or stress, and is released in a paracrine fashion, exerting its action on 115 

nearby vascular SMCs, platelets, and other endothelial cells. Prostacyclin acts on the 116 

prostacyclin receptor through G-protein coupled receptors resulting in increased adenylate 117 

cyclase activity, thereby increasing cAMP levels. This has various effects depending on the cell 118 

type affected, including decreased cytosolic calcium and increased break down of myosin light 119 

chains in SMCs leading to vasodilation, and inhibition of platelet aggregation through multiple 120 

pathways, including via inhibition of thromboxane(126). Additionally, prostacyclin signaling 121 

may lead to downstream expression of endothelial NOS leading to NO production via PPAR 122 

activation, as well playing an important anti-proliferative role via other analogues of PPAR(44). 123 

NOS levels are also reduced in platelets of patients with PAH, highlighting the role of NO as an 124 

important regulator of platelet function(13).  Patients with PAH have been shown to have 125 

decreased levels of prostacyclin synthase(168), contributing to dysregulated endothelial and 126 

vascular SMCs in the pathobiology of this disease. Since the discovery of prostacyclin as an 127 

important regulator of pulmonary vasculature, several therapeutics have been developed. Initially 128 

the focus was on improving delivery of synthetic prostacyclin(14, 126), but more recently efforts 129 

to identify the importance of the prostacyclin receptor itself are underway with new non-130 

prostanoid targeted therapies(148). 131 

 132 

The third classic pathway in the pathophysiology of PH is the Endothelin-1 (ET-1) pathway. ET-133 

1 is a potent vasoconstrictor of vascular SMCs, as well as a promoter of their proliferation. Its 134 

activity is mediated through the receptors ET-A and ET-B, the antagonism of which has been a 135 

target of therapy in PH since the 1990s. Both ET-A and ET-B act upon G-coupled protein 136 

receptors affecting concentrations of inositol triphosphate (IP3); ET-A increases IP3, thereby 137 

stimulating calcium release into the cytosol, leading to SMC constriction, whereas ET-B has the 138 

opposite effect on IP3, ultimately leading to vasodilation and clearance of ET-1. Patients with 139 

PAH have been found to have increased circulating and lung tissue levels of ET-1, as well as 140 

increased expression of ET-A receptors. Perhaps most significantly, levels of ET-1 have been 141 

found to correlate with disease severity(24). Additionally, ET-1 is known to activate RhoA/Rho 142 

kinase, a pathway that separately has been shown to significantly contribute to pulmonary 143 

vasoconstriction in murine models of both early and late stage PH. Furthermore, inhibition of 144 

Rho kinase demonstrated hemodynamic improvement in both models, even when other 145 
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vasodilator therapies were unsuccessful. Alternatively, when ET-1 is directly antagonized, there 146 

is partial reversal of pulmonary vasoconstriction(116, 172). These data suggest that the 147 

contribution of reversible pulmonary arterial vasoconstriction to PH pathophysiology persists 148 

even to late-stage disease.  In 2001, the FDA approved the first endothelin receptor antagonist 149 

which non-specifically binds to ET-A and ET-B. Newer drugs have been developed to 150 

specifically target the ET-A receptor(81), however, the clinical significance of the ET-1 receptor 151 

selectivity is not clear.  152 

 153 

 154 

The final “pathway” that is of great importance to our understanding of PH, as well as the basis 155 

of therapeutic intervention, is calcium handling and regulation within vascular SMCs. As noted 156 

in several pathways, as described above, the flow of calcium into different compartments within 157 

the cell determines the contractile nature of the SMC(58). Early interventions in PH simply 158 

blocked the influx of calcium into the cytosol via calcium channel blockers. Clinically however, 159 

very few patients with PH have initial or sustained responses to calcium channel blockade(81, 160 

149). Given its importance in all known pathways, calcium handling remains an important 161 

mechanism via which PH may develop and is discussed further below. 162 

 163 

As better understanding of vascular and endothelial biology has emerged over the past decade, 164 

additional pathways, particularly those involving the mitochondria, have been found to play 165 

significant roles in the development of PH. Comprehensive reviews by Archer et al., Huetsch et 166 

al., Paulin et al., Pugliese et al. and Schumacker et al. have described the various pathways and 167 

mechanisms by which mitochondrial dysfunction may play a role in the development of 168 

pulmonary hypertension, and have offered insights into future therapeutic applications(11, 79, 169 

124, 128, 146). However, despite this growing literature, therapeutic development has lagged 170 

behind the basic and translational sciences. As such, only the aforementioned pathways have 171 

been translated so far into actual therapies for PH. In addition to recapitulating previously 172 

described pathways, we aim to suggest a paradigm shift in the characterization, and thus, the 173 

diagnosis and treatment of pulmonary hypertension, expanding upon already known 174 

mechanisms, and pointing toward new therapeutics. 175 

 176 

Genetic underpinnings of Pulmonary Hypertension 177 

 178 

Based on the well-known form of familial or hereditary PH, the genetic underpinning of PH has 179 

been well established. The most prevalent genetic mutations occur in the bone-morphogenetic 180 

protein receptor-2 (BMPR2), which is a member of the transforming growth factor-beta (TGF-) 181 

superfamily. BMPR2 deficiency has been associated with apoptosis-resistance, increased 182 

inflammatory responses, and increased proliferation, some of which are related to defects in 183 

multiple mitochondrial pathways(32, 35, 151). Additionally, several other receptor types within 184 

this superfamily have been identified in cohorts of patients with PH, including BMPR1, activin 185 

receptor-like kinase 1(ACVRL1), and endoglin, as well as BMP-related SMADs(131, 152). 186 

Recently, several researchers have proposed a “two-hit” hypothesis of PAH given the incomplete 187 

penetrance and variable expressivity of phenotype with the above mutations, parallel to that seen 188 

with neoplastic lesions. Additional somatic mutations have been observed in the lungs of patients 189 

with PAH, though it is not exactly clear whether these result from or lead to these characteristic 190 

plexigenic lesions(7, 97).  Federici et al. then demonstrated that similar DNA damage and 191 
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mutations were more easily induced in pulmonary vascular cells from the relatives of patients 192 

with idiopathic or heritable forms of PH, than from healthy controls(47). These findings further 193 

suggest that DNA sensitivity to damage may be a precursor to pulmonary vascular disease. 194 

 195 

Epigenetic modification of genes has also been found to play a role in the development of PAH, 196 

particularly microRNA (miRNA) regulation of gene expression. Microarray profiles of patients 197 

with PAH were analyzed, identifying over 20 different miRNAs across several studies that 198 

regulate expression of various genes and signaling pathways germane to the development of 199 

PH(45, 76, 113, 156). Several miRNAs specifically target BMPR2 related pathways, whereas the 200 

majority are unrelated, and without a clear underlying connection. The table highlights a number 201 

of these small non-coding RNAs and their relationship with BMPR2, modified from Negi et 202 

al(113). This is not a comprehensive list of all epigenetic phenomena known to effect pulmonary 203 

hypertension, as this list is continually expanding. Rather, this is only a brief review of some of 204 

the micro RNAs relevant to our discussions below. 205 

 206 

miRNA Target and effect 

miR-17/92 Antagomir attenuates PH in animal models by directly targeting 

BMPR2 

miR-20a Antagomir prevents development of remodeling in PH animal 

models by directly targeting BMPR2(21) 

miR-302 Cyclic feedback relationship with BMPR2, inhibits PASMC 

proliferation and migration 

miR-21 reduces expression of BMPR2, though in vivo inhibitors attenuate 

hypoxic vasoconstriction and subsequent vascular remodeling; 

targets the HIF pathway 

miR-322 acts upon BMPR1-a and SMADs, and promotes proliferation of 

PASMCs 

miR-125a increases protein concentrations of BMPR2 in PAECs leading to 

inhibition of cell proliferation. Hypoxia leads to upregulation of 

miR-125a in mouse models. However, in human subjects with PH, 

miR-125a circulating levels are decreased when compared to normal 

controls(78) 

miR-138 and miR-25 Impair calcium signaling via downregulation of a component of the 

mitochondrial calcium uniporter (MCUC). This increases cytosolic 

calcium within pulmonary arterial SMCs leading to vasoconstriction 

and a pro-proliferative environment(76) 

miR-204 and BRD 4 Down regulation of miR-204 leads to upregulation of the “epigenetic 

reader” bromodomain-containing protein 4 (BRD4), which in turn 

leads to over expression of the oncogenes NFAT, Survivin, and Bcl-

2. The upregulation of these genes has been implicated in abnormal 

cellular proliferation in cancer cells, as well as in patients with 

pulmonary hypertension(106) 

 207 

 208 

Brief overview of cell types affected in Pulmonary Hypertension 209 

 210 
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There is complex interplay between the various cells that make up the pulmonary vasculature, 211 

with dysregulated inter-cellular communication as the origin of PH. It was first hypothesized that 212 

SMCs and myofibroblasts were the critical cell types affected in PH, however, newer evidence 213 

points to complicated communications between all cells within the vasculature. In 2005, Sakao et 214 

al. hypothesized that the cascade of events that lead to the vascular remodeling characteristic of 215 

pulmonary vascular disease begins with early apoptosis of the pulmonary endothelial cell, 216 

leading to hyper-proliferation of “apoptosis-resistant” endothelial cells(141).  In general, 217 

endothelial cells display a propensity to proliferate, a necessary feature to rapidly repair when 218 

injured. There are, however, different subpopulations that possess a greater propensity for 219 

proliferation than others. Alvarez et al. demonstrated that pulmonary microvascular cells in 220 

particular, grow nearly two times faster than other populations. Furthermore, they demonstrated 221 

that the pulmonary vasculature contains a significant proportion of progenitor cells with much 222 

higher vasculogenic capacity(8). Sakao et al. further demonstrated that when naïve endothelial 223 

cells were placed in media that was conditioned with apoptotic cells, the plated endothelial cells 224 

would adopt an apoptosis-resistant phenotype(141). Helenius et al. also demonstrated this 225 

phenotype, a result of vascular SMC migration and downregulation of CD39 on the surface of 226 

endothelial cells leading to extracellular accumulation of ATP, and resultant increase in 227 

perivascular inflammatory cells(74).  These disorganized and hyper-proliferative endothelial 228 

cells are precursors to the plexiform lesions in small precapillary pulmonary arterioles, which are 229 

the histopathologic hallmarks of PAH(157).   230 

 231 

Plexiform lesions form in response to specific stimuli or injury, which can include hypoxemia, 232 

shear stress, inflammation, drug or toxin, likely in a genetically susceptible host. Injury alters 233 

endothelial cell proliferation, apoptosis, and homeostatic functions such as coagulation 234 

pathways, and response to growth factors and vasoactive agents(80). Defects in growth 235 

suppressive genes and increased levels of angiogenic factors such as PDGF and VEGF have been 236 

found in plexiform lesions(140, 184), which are often characterized by clonal populations of 237 

endothelial cells, suggesting these sites play a role in endothelial proliferation(167). 238 

Additionally, the crosstalk between endothelial cells and pericytes is important to vascular 239 

remodeling. Ricard et al. hypothesized that pulmonary endothelial cell dysfunction leads to 240 

abnormal microvascular pericyte distribution, causing pulmonary arterial medial thickening, via 241 

abnormal fibroblasts growth factor-2 and interleukin-6 signaling(134).   242 

 243 

SMCs and myofibroblasts also play an important role in the vascular remodeling of precapillary 244 

arterioles. SMCs migrate distally along the arteriole towards the respiratory acinus, adding SMCs 245 

to precapillary pulmonary arterioles that were previously non-muscularized. A new layer of 246 

myofibroblasts and extracellular matrix forms between the endothelium and the internal elastic 247 

lamina, termed the neointima. This altered extracellular matrix has increased expression 248 

of collagens, matrix metalloproteinase 19, disintegrin, and metalloprotease 33 in both intimal 249 

and medial layers(75, 154).  The cellular mechanisms of these processes are not well understood, 250 

however, hypoxia models suggest that fibroblasts in the adventitia may be the first to 251 

differentiate to myofibroblasts and lead to the cascade of migration and proliferation(154). 252 

Evidence suggests that the serotonylation of fibronectin by tissue transglutaminase likely plays a 253 

role in this tissue migration, as demonstrated in hypoxia-induced PH animal models(125, 176).  254 

Neovascularization occurs following the formation of the neointima, with blood vessels forming 255 

in the now thickened adventitia and media(80, 128).  There is also evidence from animal models 256 
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that SMCs play a role in balancing cytosolic and mitochondrial ROS in response to cyclic 257 

stretching leading to downstream expression of growth factors for both endothelial cells and 258 

SMCs. In models already demonstrating a propensity for proliferation, this leads to a so-called 259 

“feed forward” mechanism of growth(174).  260 

 261 

Macrophages and lymphocytes have also been found histologically near plexiform lesions in a 262 

subset of patients, suggesting an inflammatory component to this pathogenesis(167), although 263 

the specific contribution from the adaptive immune system is not well characterized. Maston et 264 

al. found that genetic deletion of the recombination-activating gene 1 in mice (RAG1 -/-), which 265 

lack mature B and T cells, results in diminished right ventricular systolic pressures and less 266 

vascular remodeling compared with wild type mice that were exposed to hypoxia. In fact, they 267 

found that RAG1 -/- mice that were given T helper 17 cells developed PH independent of 268 

hypoxia(102). IL-13, a T-helper type-2 cell effector cytokine, has also been implicated in the 269 

pathogenesis of PAH.  In one study, IL-13 stimulated cellular proliferation in human pulmonary 270 

artery SMCs(27). Additionally, chronic inflammation or immune dysregulation may be the 271 

inciting injury that causes PAH to develop in patients with human immunodeficiency virus 272 

infection or in patients with connective tissue diseases. For example, some patients with systemic 273 

lupus erythematosus have had clinical benefit of their PH from immunosuppressive therapy, 274 

underscoring the role inflammation may have in subsets of patients(38, 107). 275 

 276 

 277 

Metabolic pathways and mitochondria in Pulmonary Hypertension – the “Metabolic 278 

theory” 279 

 280 

The “Metabolic theory” of disease suggests that alterations in the bioenergetics of an organism 281 

lead to dysfunctional processes downstream, with the subsequent development of disease. This 282 

theory has been most thoroughly described in cancer biology(28, 37, 147, 159, 170) but more 283 

recently has been expanded to the pathobiology of PH(10, 65, 109, 147). 284 

 285 

Specifically, the metabolic shift within an organism from energy production predominantly via 286 

aerobic respiration to that of glycolysis and fermentation leads to a number of adaptive and 287 

maladaptive downstream effects. Endothelial cells are very sensitive to this change, particularly 288 

as they are the first to ‘sense’ an internal environment low in oxygen, and their importance in 289 

signaling to surrounding cells. Notably, endothelial cells from different vascular beds are quite 290 

different in their responses to stress, circulating factors, and surrounding cells(54). Due to their 291 

unique environment, some of the cells within the pulmonary vasculature rely more heavily on 292 

glycolysis, such as the pulmonary microvascular endothelial cells which use aerobic glycolysis 293 

as the predominant source of energy(120). Other cells, such as the pulmonary artery endothelial 294 

cells, however, depend more highly on cellular respiration for their energy requirements(121, 295 

180). These differences between cell types allows the pulmonary vasculature to be highly 296 

sensitive to small changes in oxygen concentration, and a metabolic shift to increased glycolysis 297 

is important in inducing a signaling cascade that leads to rapid vasoconstriction of the pulmonary 298 

bed to preserve ventilation-perfusion matching(177). In patients with PH, this metabolic shift 299 

occurs at higher or even normal oxygen concentrations(128). This “glycolytic shift” in the face 300 

of normoxia has been termed the “Warburg effect” after the German physician who first 301 
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described this phenomenon in the 1920’s, and is associated with a more highly proliferative 302 

phenotype (54, 146, 170, 177). 303 

 304 

Aside from simply being less efficient in energy production, this process leads to sudden shifts in 305 

reactive oxygen species (ROS) production with impaired handling of oxidative stress(22, 48), 306 

alterations in oxygen-sensing potassium channels (Kv 1.5 channels), resultant shifts in cytosolic 307 

calcium, and constriction of the pulmonary vasculature(11).  308 

 309 

Mitochondrial and cellular biology rely on the presence of ROS for signaling and internal 310 

regulation, however, the hallmark of metabolic or mitochondrial disease is an imbalance of 311 

oxidative stress(89, 94, 146). Typically, the production and removal of ROS is tightly regulated, 312 

particularly mitochondrial ROS (mROS). This allows for changes in ROS content within 313 

compartments to signal downstream targets, some of which include signal transducers and 314 

transcription factors that regulate apoptosis, cellular proliferation, angiogenesis and even gene 315 

expression.  In the vascular compartment, NADPH oxidases (NOXs) are a significant source of 316 

ROS and mROS(62).  Multiple endogenous and exogenous oxidants activate NADPH, and many 317 

have been used to induce cellular injury in animal and in vitro models. Examples include 318 

hyperoxia, hypoxia, inhaled particles, xanthine oxidase, cigarette smoke, and other reactive 319 

oxygen species themselves, all of which contribute to mitochondrial dysfunction by 320 

overwhelming enzymes within the OXPHOS metabolic pathway(9, 18, 69, 158). For example, 321 

Ghouleh et al. recently demonstrated increased expression of Nox-1 in the pulmonary 322 

endothelium of patients with PH. This correlated to increased overall ROS production, and 323 

increased expression of an antagonist to bone morphogenetic protein (BMP) and the 324 

proangiogenic factor sonic hedgehog (SHH)(57).  Conversely, deficiency in Nox1 expression 325 

within PASMCs, which leads to decreased mROS production, was shown to be associated with 326 

SMC proliferation and vascular remodeling(82). Other studies of hypoxia-induced pulmonary 327 

hypertension have demonstrated overexpression of Nox-4 with associated increase in ROS levels 328 

and down-regulation of thioredoxin 2, a mitochondrial redox regulator(1). This is to highlight the 329 

fact that different cellular compartments may experience different degrees and different types of 330 

ROS, a fact that has significant impact on downstream expression(173).   331 

 332 

Ultimately, unregulated oxidative stress leads to dysfunction and ultimately removal of impaired 333 

mitochondria through a process called mitophagy(4). In the pathobiology of disease, this 334 

contributes to reduced mitochondrial mass and impairs ATP production, further promoting a 335 

glycolytic state(89, 138). Specifically in PH, glycolysis promotes hyperpolarization of the inner 336 

mitochondrial membrane, preventing the release of pro-apoptotic chemicals and, in part, leading 337 

to a so-called “apoptosis-resistant” phenotype(170). Additionally, inhibitors of apoptosis are 338 

released from mitochondria when cells are under stress. These changes, in addition to other pro-339 

angiogenic factors that are upregulated or altered in patients with PAH, are the basis of the 340 

metabolic theory of PH. 341 

 342 

The resistance to apoptosis is a major factor in the pathobiology of pulmonary hypertension. 343 

First described in tumor cells, Dohi et al. identified mitochondrial pools of the caspase inhibitor 344 

survivin were shown to be released into the cytosol when tumor cells had received pro-apoptotic 345 

signals(37). McMurtry et al. then demonstrated that survivin is also upregulated in patients with 346 

PAH, as well as in monocrotaline rat models of PAH. Furthermore, they were able to show that 347 
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levels of survivin expression in PASMCs correlated to severity of disease, and when survivin 348 

was inhibited, measures of pulmonary hypertension were attenuated in this animal model(104). 349 

Michelakis et al. provided further evidence of the role of apoptosis-resistant PASMCs in the 350 

development of pulmonary hypertension, when they used the metabolic modulator 351 

dichloroacetate (DCA). In addition to promoting oxidative phosphorylation via activation of 352 

pyruvate dehydrogenase, DCA also depolarizes the mitochondrial membrane via upregulation of 353 

Kv 1.5 channels, which then leads to caspase activation and increased apoptosis. Administration 354 

of this molecule to rats who developed PH after exposure to chronic hypoxia successfully 355 

reversed evidence of the disease in these animals. They then demonstrated that administration of 356 

DCA along with chronic hypoxia prevented the development of pulmonary hypertension(108). 357 

McMurtry et al. recapitulated this effect in a model of monocrotaline induced PH, again 358 

demonstrating an increase in apoptosis leading to reversal of the PH phenotype(105).  359 

 360 

For some time, the transcription factor hypoxia inducible factor 1-alpha (HIF-1α) has been at the 361 

center of this theory. HIF-1α expression, which controls energy metabolism, erythropoiesis, 362 

vasomotor tone, and angiogenesis, is typically upregulated by hypoxia(11). However, 363 

Fijalkowska et al. demonstrated that pulmonary endothelial cells in idiopathic PAH patients have 364 

greater HIF-1α accumulation under normoxia and hypoxia, as compared to controls(49). The 365 

expression of HIF-1α and its transcriptional target carbonic anhydrase IX were also increased in 366 

the endothelial cells of blood vessels with plexiform lesions in vivo(49). HIF-1α pathway is 367 

thought to be regulated by KLF5, a transcription factor that when genetically silenced, attenuates 368 

hypoxia-induced pulmonary hypertension(93).  Chettimada et al. also found that increased 369 

glucose-6-phosphate dehydrogenase (G6PD) activity increased HIF-1α, which directed cells to 370 

synthesize less contractile proteins, and more proliferative proteins in PASMCs(25, 26).  371 

 372 

Increased HIF-1α is also caused by decreased levels of NO and manganese superoxide dismutase 373 

(MnSOD or SOD2) activity. Sato et al. first published on SOD2 deficiency in fawn-hood rats 374 

leading to the spontaneous development of pulmonary hypertension(142), and the induction of 375 

other isoforms of superoxide dismutase have been associated with the development of pulmonary 376 

hypertension(132), though exact mechanisms had not been clear.  Fijalkowska et al. showed that 377 

decreases in SOD2 in normal endothelial cells was sufficient to increase HIF-1α expression 378 

under normoxia. Furthermore, HIF-1α knockout mice exhibit increased numbers of 379 

mitochondria(49), suggesting that increased expression of HIF-1α likely contributes to decreased 380 

mitochondria, often seen in PH endothelial cells. Additionally, Bonnet et al. demonstrated this 381 

same mechanism in the fawn-hood rats, further establishing this connection(19).  SOD2 is the 382 

enzyme responsible for converting superoxide, which is produced early in the electron transport 383 

chain, into H2O2. Presence of this redox molecule is necessary for signaling to “oxygen-sensors” 384 

that the environment is “normoxic” by keeping Kv 1.5 channels open, thereby preventing 385 

stabilization of HIF-1α. If SOD2 is deficient, then H2O2 levels fall. When SOD2 activity is 386 

restored, HIF-1α expression is again suppressed(10).  387 

 388 

As most mitochondrial proteins, SOD2 is not produced within the mitochondria, but rather is 389 

nuclear-derived, and assembled within the cytosol, then requires transport into the mitochondria. 390 

This process is regulated by the heat shock protein iHSP70. Afolayan et al. describe the process 391 

whereby impairment of this chaperone mechanism due to low ATP levels leads to increased 392 

cytosolic degradation of SOD2, and thus decreased mitochondrial levels of the enzyme, 393 
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impairing conversion of superoxide(3). This further impairs redox signaling as described above. 394 

Similarly, SOD1 deficiency leads to impaired conversion of superoxide to hydrogen peroxide. 395 

However, the mechanism seems to be different in that SOD1 (-/-) mice also develop PH 396 

spontaneously, but the phenotype is not augmented by chronic hypoxia, and appears to be driven 397 

by activation of the transcription factor NFAT(132). Bonnet et al. demonstrated that NFAT 398 

activation led to changes in calcium handling (increased cytosolic Ca2+), and decreased density 399 

of Kv 1.5 channels leading to similar mechanistic outcome as described above(20).  400 

 401 

Interestingly, new evidence suggests that there may be alternative mechanisms responsible for 402 

chronic hypoxia-induced PH compared to acute hypoxia-induced pulmonary vasoconstriction 403 

(HPV). Sommer et al. demonstrated that SMCs of mice with Cox4i2
-/-

 (a subtype of cytochrome 404 

C, or complex IV of the ETC) were resistant to acute HPV, though continued to develop 405 

characteristic PH when exposed to chronic hypoxia. In this model, HIF-1 stabilization was not 406 

affected, suggesting that mitochondrial ROS production alone is not sufficient for its 407 

stabilization(150).  408 

 409 

Additionally, both pulmonary and total body NO is reduced in PAH patients(59, 83, 98). In 410 

normoxia, the presence of NO mimics the effects of hypoxia and HIF-1α levels increase, 411 

whereas low levels of NO decrease HIF-1α levels. In hypoxia, however, increasing levels of NO 412 

reduce HIF-1α in the endothelial cells of normal hosts(95) by blocking cellular respiration, 413 

which enables a higher level of overall intracellular O2 that results in HIF-1α degradation(68). In 414 

the endothelial cells of patients with PH, high levels of NO resulted in increased HIF-1α 415 

expression under normoxia, whereas low levels of supplemented NO reduced HIF-1α. High 416 

levels of NO decreases the need for the endothelial cells to synthesize their own NO. This 417 

suggests that the loss of NO production, via decreased endothelial NO synthesis, may result in 418 

the activation of HIF-1α under normoxia in patients with PH(49).   419 

 420 

NO regulates cellular respiration and mitochondrial biogenesis. In models of primary pulmonary 421 

hypertension, there is decreased eNOS activity which is associated with mitochondrial 422 

impairment and decreased ATP levels, and dysregulated endothelial angiogenesis(2, 85). When 423 

treated with inhaled nitric oxide (iNO) or an NO donor such as detaNONOate, mitochondrial 424 

biogenesis was restored along with ATP levels(2). Similarly, Xu et al. showed that the 425 

endothelial cells of patients with PH had decreased mitochondrial dehydrogenase activity, lower 426 

numbers of mitochondria and mitochondrial DNA content per cell, all of which increased after 427 

exposure to NO(180). This restoration of mitochondrial mass and return to appropriate redox 428 

balance in response to increased NO appears to be mediated by PGC-1 with downstream 429 

effects on AMPK, Sirt-1, and eNOS. In fetal lambs, this balance was negatively affected by 430 

increased oxygen levels(2). Xu et al. also found that although ATP content under normoxia was 431 

similar in the endothelial cells of subjects with PH as compared to normal controls, cellular ATP 432 

levels did not change significantly in PH cells under hypoxia. This suggests that the endothelial 433 

cells of normal subjects are more dependent on cellular respiration for energy under hypoxia than 434 

PH cells. Additionally, the endothelial cells of subjects with PH were found to have a three-fold 435 

greater glycolytic rate, which provides evidence of altered metabolism in these cells(180). 436 

 437 

More recently, a role for the transcription factor STAT3 has been described. Originally known 438 

for its role in acute phase reactions, such as activation by the cytokine IL-6 and interacting with 439 
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JAK(182), STAT3 has also been identified as a promotor of VEGF and other angiogenic factors. 440 

Its role in vessel proliferation and pro-survival mechanisms has again been demonstrated in 441 

tumor cell lines(114), and evidence has accumulated for a similar role in PH. STAT3 activation 442 

is significantly increased in endothelial cells of subjects with PH, and specifically localizes to 443 

areas of plexiform lesions. Furthermore, when STAT3 is inhibited, so is the hyperproliferative 444 

phenotype observed in PH(101).  STAT3 leads to the activation of survivin, NFAT and Bcl-2, all 445 

of which promote an apoptosis-resistant environment(123), and promotes HIF-1α expression and 446 

signaling, further supporting a pro-remodeling phenotype(101, 155). Independent of its 447 

transcriptional activity, STAT3 has also been shown to directly regulate mitochondrial function. 448 

Wegrzyn et al. discovered that STAT3 localizes to complexes I and II of the electron transport 449 

chain(175), and further work has identified its role in regulating a number of functions, including 450 

calcium homeostasis(182).  451 

 452 

As alluded to earlier, intracellular calcium handling is a complex process and an important 453 

function of mitochondria that has only more recently been understood. Calcium homeostasis has 454 

a role in mitochondrial respiration, oxygen-sensing, and cell survival, amongst others (66). 455 

Increases in mitochondrial calcium leads to activation of mitochondrial and TCA cycle enzymes, 456 

accelerating oxidative metabolism and thereby increasing ROS production(41). Oxygen-sensitive 457 

potassium channels (Kv 1.5) affect L-type voltage gated calcium channels. As the surface 458 

expression of potassium channels declines in the presence of hypoxia (low H2O2), there is a 459 

downstream increased influx of calcium via these L-type calcium channels. In pulmonary SMCs, 460 

this leads to contraction (thus vasoconstriction) acutely(10, 169). 461 

 462 

In addition to the classic L-type calcium channels, a group of incompletely understood non-463 

selective channels has been identified that regulates calcium signaling in vascular cells, called 464 

transient receptor potential channels (TRPCs)(163, 171, 183, 190). In patients and in animal 465 

models with PH, there are also greater numbers of calcium sensitive receptors (CaSR), 466 

particularly on SMCs. These CaSRs enhance calcium transport through certain TRPCs, which 467 

plays a significant role in the pathogenesis of PH(163). TRPC3, has been found to localize to the 468 

inner mitochondrial membrane of SMCs, and augment mitochondrial influx of calcium(188). 469 

Wang et al. demonstrated that the presence of TRPC3 lead to increased vasoconstriction, and 470 

thus increased systemic hypertension in an animal model. Furthermore, inhibition of TRPC3 by 471 

telmesartan reduced ROS production, and improved mitochondrial respiration(171). 472 

Additionally, Teshima et al. identified that overexpression of the mitochondrial protein, 473 

uncoupling protein-2 (UCP2) in cardiomyocytes prevented excessive influx of calcium into 474 

mitochondria and reduced ROS production(165). Conversely, if mitochondrial calcium is 475 

reduced, mitochondrial function is impaired. Dromparis et al. observed that when the 476 

mitochondrial protein uncoupling protein-2 (UCP-2) was deficient in pulmonary SMCs, calcium 477 

transfer into mitochondria from nearby endoplasmic reticulum (ER) declined, resulting in a 478 

switch to glycolysis. Additionally, these UCP2-deficient cells demonstrated impairment in 479 

calcium-sensitive pyruvate dehydrogenase, an important enzyme in the TCA cycle, further 480 

perpetuating the glycolysis pathway(40).  Similarly, overexpression of the protein Nogo-B, a 481 

protein that tethers the ER to the mitochondria allowing for efficient calcium transfer, has been 482 

associated with the development of PH. During ER-stress, ATF6 is activated and Nogo-B is 483 

upregulated leading to mitochondrial hyperpolarization, suppression of Kv 1.5 channels, and 484 

stabilization of HIF-1, thereby stimulating a pro-survival and apoptosis resistant environment. 485 

Downloaded from www.physiology.org/journal/ajplung by ${individualUser.givenNames} ${individualUser.surname} (130.132.173.229) on February 27, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



 

Conversely, inhibition of Nogo-B promotes apoptosis in PASMCs and prevents development of 486 

the PH phenotype in animal models(160).  487 

 488 

As illustrated by Sutendra et al., and Dromparis et al., the proximity of mitochondria to ER also 489 

plays an important regulatory role. There is evidence that ER wrap around mitochondria marking 490 

several points of contact for the fission protein DLP1 to promote mitochondrial fission. This 491 

process is enhanced during periods of stress or hypoxia, when DLP1 is upregulated(88).  492 

Delmotte et al. expand upon this relationship with sarcoplasmic reticulum (SR) and describe a 493 

mechanism by which mitochondria move within cells based on cytosolic concentrations of 494 

calcium. They demonstrate that calcium concentrations, and thus mitochondrial movement, is 495 

affected by certain inflammatory cytokines, leading to decreased proximity to SR and potential 496 

inability to meet metabolic demands of the cell, and resulting in increased metabolic stress(33, 497 

34). Also interestingly, during hypoxia, mitochondria have been shown to localize to the 498 

perinuclear region within a cell. This is associated with increased nuclear ROS accumulation and 499 

subsequent oxidative base damage to so-called hypoxic responsive elements (HREs) of certain 500 

genes.  Specifically, modification to VEGF promoter regions allows incorporation of HIF-1, 501 

thereby upregulating VEGF expression(6, 122). Al-Mehdi et al. demonstrated that when 502 

mitochondrial localization was inhibited, overall ROS production was not altered, though nuclear 503 

oxidative base damage was impaired, thereby preventing hypoxia induced upregulation of 504 

VEGF(6). These observations suggest that alterations in ROS production alone is not sufficient 505 

to effect phenotypic changes, but rather location of mitochondria within the cell plays an 506 

important role in the development of PH. With ongoing advances in subcellular imaging such as 507 

CEPIA and live imaging techniques (LIT)(135, 162), the importance of the physical relationships 508 

of organelles and their molecular messengers (i.e. calcium and ROS) may be further elucidated 509 

in future studies. 510 

 511 

Uncoupling proteins have other important effects on mitochondria. In addition to regulation of 512 

calcium handling, Teshima et al. also demonstrated that increased UCP2 was associated with 513 

maintenance of mitochondrial membrane potential, suppression of cell-death markers, and 514 

ultimately with cardioprotection(165). The importance of well-regulated mitochondrial 515 

membrane potential has already been discussed, and hyperpolarization of this membrane has 516 

been clearly associated with the development of PH. Pak et al. demonstrated that the 517 

mitochondrial membrane potentials of SMCs of subjects with PH were hyperpolarized when 518 

compared to SMCs of normal controls. This was recapitulated in monocrotaline-induced PH 519 

animal models, and again in UCP2-knockout mice. Characteristic of other PH models, the 520 

UCP2-knock mice also demonstrated the pro-proliferative and anti-apoptotic phenotype (118). 521 

 522 

Following from the identification of UCP2 as an important mediator in the development of a PH-523 

phenotype in SMCs, interest arose in exploring other cell types. Our group examined the role of 524 

UCP2 in endothelial cells. We used intermittent hypoxia as a model of oxidant-induced PH to 525 

identify the role of mitophagy via mitochondrial UCP2 in the development of PH(72). 526 

Mitophagy is the selective autophagy of mitochondria, and is an important quality control 527 

mechanism that eliminates damaged mitochondria, though defects in mitophagy has been 528 

implicated in certain cancers and a number of pulmonary diseases(4, 28, 87, 139). Specifically, 529 

the imbalance between mitochondrial biogenesis and mitochondrial turn-over leads to functional 530 

impairment of the cell. This relationship has been demonstrated in various pathological 531 
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processes, as well as in the process of ageing(119).  In terms of its role in the development of 532 

pulmonary hypertension, there is evidence of increased mitophagy and decreased mitochondrial 533 

biogenesis in human patients with PAH as well as in experimental mouse models of the 534 

disease(72, 138). 535 

 536 

Mitophagy is initiated by a change in mitochondrial membrane potential which leads to the 537 

accumulation of PTEN-induced kinase 1 (Pink1) on the outer mitochondrial membrane, leading 538 

to the recruitment of cytoplasmic Parkin, and subsequent ubiquitination of damaged 539 

mitochondria(61). Oxidative injury increases mitophagy(4, 187) and excessive mitophagy can 540 

lead to cell death (12).  Our group found that the loss of endothelial UCP2 increased levels of 541 

mitophagy-associated proteins Pink1 and Parkin, which led to increased mitophagy. 542 

Additionally, Haslip et al. demonstrated decreased levels of PGC-1, a transcriptional co-factor 543 

involved in multiple pathways promoting mitochondrial biogenesis. Increased mitophagy and 544 

inadequate mitochondrial biosynthesis was shown to be associated with increased apoptosis in 545 

endothelium. These changes were associated with physiologic evidence of PH in mice, such as 546 

increased right ventricular systolic pressure and right ventricular hypertrophy. We also found 547 

that even at room air, the loss of endothelial UCP2 resulted in increased Pink1 and Parkin, and 548 

resulted in the development of spontaneous PH(72), emphasizing the role of endothelial 549 

mitophagy and the UCP2 pathway in the development of pulmonary vascular remodeling.  550 

 551 

Aside from alterations in mitochondrial proteins and pathways, mitochondrial DNA (mtDNA) 552 

itself plays a significant role in the regulation of mitochondrial functioning. Though there is 553 

evidence of nuclear DNA damage contributing to pulmonary hypertension(133), the effects of 554 

mitochondrial DNA damage and mutations have been most thoroughly explored in cancer 555 

biology(23). Significant to our discussion, mtDNA is exquisitely more sensitive to oxidative 556 

damage than is nuclear DNA, especially when comparing exogenous (i.e. xanthine oxidase) 557 

versus mitochondrial derived ROS(29, 36, 63), thereby increasing the risk of function-altering 558 

mutations in the genome(23). Interestingly, when mitochondrial oxidative repair enzymes are 559 

down-regulated, there is increased cytotoxicity and subsequent apoptosis. Conversely, when 560 

these enzymes are over-expressed, there seems to be a protective effect on the cell(146). Ruchko 561 

et al. demonstrated in pulmonary arterial endothelial cells that when mtDNA specifically was 562 

exposed to exogenous oxidant stress, there was increased mitochondrial dysfunction (as 563 

measured by changes in mitochondrial membrane potential as described above), and subsequent 564 

increased apoptosis. In this model, if mtDNA repair mechanisms were upregulated via the over-565 

expression of Ogg1, mitochondrial membrane potential was spared, and these cells were 566 

protected against oxidant-induced apoptosis(137). These protective effects of Ogg1 were 567 

reproduced in other forms of oxidant injury, including ventilator-induced and hyperoxia-induced 568 

lung injury(71). Further studies also demonstrated a protective effect on barrier function of 569 

endothelial cells, which is not only important in models of lung injury and PH, but also 570 

inflammatory models and sepsis(29). Similarly, work that was done by our lab demonstrated the 571 

role of mitochondrial dysfunction and impaired turnover, on worse outcomes in sepsis-induced 572 

lung injury. Using a model of MKK3 deficient mice, we identified increased turnover of 573 

defective mitochondria through a PGC-1 (peroxisome proliferator-activated receptor γ 574 

coactivator 1)-mediated mechanism, resulting in decreased ROS production, decreased apoptosis 575 

as well as inflammation and improvements in survival(100). 576 

 577 
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Attendant to mitochondrial dysfunction and subsequent degradation of mitochondria via 578 

mitophagy, is the breakdown and recycling of mtDNA. It has been demonstrated in other models 579 

(i.e. sepsis, atherosclerosis, and cancer biology) that mtDNA is released from cells after 580 

apoptosis (and perhaps mitophagy alone), either in toto or as fragments(146, 178). These 581 

fragments are expressed as damage-associated molecular patterns (DAMPs), and have been 582 

demonstrated to play a role in innate immunity, and as such, inflammation-mediated end-points, 583 

such as plaque rupture and endothelial remodeling(178).  DAMPs have been found to play a 584 

major role in activating toll-like receptors(178), including TLR4 and TLR9. TLR4 can be found 585 

on tumor cells, and its activations leads to tumor progression(92). Additionally, TLR4 activation 586 

of platelets is associated with development of PH(16), and in models of sickle cell disease, 587 

DAMPs are associated with development of the vasculopathy that leads to PH(127). TLR9 588 

activation, however, leads to further damage and fragmentation of mtDNA, suggesting a “feed-589 

forward” mechanism for continued mitochondrial injury(86). DAMPS are also recognized by 590 

NOD-like receptors (NLRs), which trigger additional responses by immune cells. Notably, the 591 

NLRP3 inflammasome is activated by mitochondrial-associated DAMPs, and has been 592 

associated with the pathogenesis of PH(112). Additionally, when the receptor P2X7R, and 593 

upstream activator of NLR, was inhibited, the development of PH in an animal model was 594 

attenuated(185). This further suggests that mitochondrial damage is associated with perivascular 595 

inflammation and the development of PH. 596 

 597 

Additional signaling mechanisms have been described, including ‘mitokines’, or mitochondrial-598 

derived peptides. Mitokines are released in response to mitochondrial stress or dysfunction in 599 

one organ, and can signal certain responses of mitochondria in other tissues(161). A number of 600 

candidate molecules have been identified, including most prominently humanin and MOTS-c, 601 

both of which have been shown to play protective roles in metabolic disease(84). Humanin was 602 

first identified in Alzheimer’s disease, but Widmer et al. demonstrated that this peptide is also 603 

expressed in vascular endothelial cells, and its expression is upregulated in the presence of 604 

endothelial injury or dysfunction with higher levels being associated with improvement in blood 605 

flow, a surrogate for endothelial function(179). Humanin is thought to exert its protective effects 606 

through improved NO bioavailability, and through both pro-apoptotic and anti-apoptotic 607 

mechanisms(84, 166, 179). Zhang et al. demonstrated that when mice were fed a diet 608 

supplemented with humanin, they expressed increased anti-angiogenic proteins and inhibited 609 

angiopoietin-1(189), a protein that has been implicated in SMC hyperplasia in PH models(53, 96, 610 

111), which led to attenuated vascular remodeling and fibrosis. Of note, exogenous humanin 611 

administration was also associated with increased expression of STAT3 in this model(189). 612 

Further supporting its role in mitochondrial protection, Thummasorn et al. showed significant 613 

decreases in myocardial infarction size when exogenous humanin was infused prior to ischemic 614 

injury, and concomitant decrements in mitochondrial ROS production. Additionally, the 615 

expression of pro-apoptotic proteins, such as Bax and pro-caspase-3, was attenuated in the 616 

presence of exogenous humanin(166).  617 

 618 

In addition to humanin, newer mitokines have been discovered that exert similarly 619 

“metaboloprotective” effects on cells and cellular systems. Mitochondrial open reading frame of 620 

the 12S rRNA-c (MOTS-c), and another related group called small humanin-like peptides 621 

(SHLP) 1-8, have been shown to act similarly to humanin in their ability to increase 622 

mitochondrial biogenesis, and thus increase oxygen consumption and decrease ROS production. 623 
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Though these molecules act on similar targets as humanin, such as the AMPK pathway, there is 624 

not yet sufficient evidence regarding their roles in disease outside of insulin-resistance and 625 

ageing(84). 626 

 627 

Future directions and therapeutics in PH; why understanding mitochondrial dysfunction 628 

in PH is relevant to potential therapeutics 629 

 630 

Current therapies do not cure the disease, and appear to have limited effects on the underlying 631 

pathobiology, which we now appreciate involves major changes in endothelial and SMC 632 

behavior, with the evolution of a glycolytic, apoptosis-resistant, and proliferative cellular 633 

phenotype, enhanced by a complex interplay of inflammation, metabolic derangements and 634 

mitochondrial processes. 635 

 636 

Prior to focusing on therapeutics, it may be prudent to reclassify PH based on molecular 637 

phenotype. Defining patients by clinical criteria alone is no longer sufficient to produce the 638 

advances needed in treating this disease(42). Gurtu et al. argue that a diagnostic, therapeutic, and 639 

research-oriented approach to PH should mimic the “precision medicine” paradigm of cancer 640 

research and therapeutics(67). In changing this paradigm, we may improve our approaches to 641 

treatment, and continue to spark more novel therapeutics in the future(15).  642 

 643 

One such approach would be to further characterize the metabolomics of PH. For example, 644 

Lewis GD makes a strong argument for profiling of the NO pathway, and more importantly, of 645 

“NO responsiveness” in patients with PH(90), to better understand how patients may benefit 646 

from therapy. In a separate report, Lewis et al. demonstrate strong correlations with metabolic 647 

profiles and clinical phenotypes(91), and possibly with clinical outcomes. 648 

 649 

Other potential areas of exploration regarding future improved characterization and diagnostics 650 

include evaluation of mitochondrial subunits themselves. There are currently well-established 651 

methods for comparing circulating mitochondrial DNA and nuclear DNA in other human 652 

diseases, namely in cancer(145, 186). Given the numerous similarities to cancer pathobiology, it 653 

would not be surprising that we find similar correlations between circulating mitochondrial DNA 654 

numbers in PH and disease phenotype or outcomes. Furthermore, Farha et al. demonstrated that 655 

independent of germline mutations, mitochondrial genetics may play a role in predisposing 656 

groups to the development of PH, making this a very interesting area for further exploration(46).  657 

 658 

The treatment of PH can capitalize on already achieved milestones in precision medicine, by 659 

coopting treatments that already exist in other fields. Targeting transcription factors (e.g. STAT3, 660 

mTORC, Akt, PI3K, FoxO, NFAT, and NF-B) in addition to dysregulated metabolic and 661 

mitochondrial signaling networks, may reverse established disease(31, 70, 117, 138). As noted 662 

by Tuder et al., upregulation of HIF-1/ alone leads to the activation of more than 100 genes 663 

individually involved in bioenergetics, apoptosis, angiogenesis, and so on, making this area ripe 664 

for therapeutic intervention(169). This makes the repurposing of targeted cancer or immunologic 665 

therapies a promising prospect for the treatment of PH(130). To this end, certain cancer 666 

treatments have been tested in animal models of PH and have largely provided promising results, 667 

particularly with EGFR and PDGFR inhibition demonstrating positive effects on hemodynamics, 668 
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remodeling, and survival in experimental PH. (17, 77, 99, 144). Unfortunately, many of these 669 

have not born out in human studies(64, 110). 670 

 671 

Directly targeting mitochondrial function has been studied in other disease processes as well, and 672 

may prove effective in PH. Agrawal and Mabalirajan provide a useful model for considering 673 

therapeutics for mitochondria, named the 3Rs: repair, replacement, and reprogramming(5). In 674 

our discussion above, we have touched upon each of these areas of mitochondrial biology. In 675 

terms of repair, anti-oxidants and other ROS scavengers have long been considered in treatment 676 

of many disease processes, including PH, and most have proven either ineffective or not feasible. 677 

MitoQ and other mitochondrial-specific scavengers of ROS, have been shown to improve 678 

mitochondrial functioning in PH(143), as well as other metabolic disease states, such as diabetes 679 

heart disease(164), and cigarette-smoke induced lung injury(9, 69). Additionally, direct repair of 680 

mitochondrial DNA has been demonstrated by the addition of exogenous mitochondrial-targeted 681 

fusion proteins Ogg1 and Endo III(29). This was associated with normalization of ROS 682 

production and apoptotic mechanisms in pulmonary endothelial cells. Though this has not been 683 

directly associated with reversal of pulmonary hypertension, there are several corollary studies to 684 

suggest this strategy may provide some benefit(29, 35, 86). 685 

  686 

Other more novel repair mechanisms have included mitochondrial regeneration or mitochondrial 687 

transplantation. Replacement of diseased or defective mitochondrial via improved mechanisms 688 

of mitophagy is being explored. As noted earlier, there may be a role in inhibition of MKK3 in 689 

improving mitochondrial turnover(100). Similarly, replacement or upregulation of PGC-1 may 690 

have similar beneficial effects on mitochondrial turnover. Agrawal and Mabalirajan describe the 691 

use of pyrroloquinoline quinone (PQQ) as a promoter of this pathway, and may improve the 692 

balance of healthy mitochondria(5). Through a similar mechanism, there is evidence that 693 

salicylate, the main ingredient of aspirin, also promotes mitochondrial biogenesis through the 694 

expression of PGC-1(181). Separately, aspirin has also been shown to attenuate hemodynamic 695 

changes and RV remodeling in monocrotaline rat models through inhibition of ERK 1/2 696 

pathways(52).  697 

 698 

More novel approaches to replace mitochondria have been described, including transfer of 699 

healthy mitochondria to injured cells(60, 103, 153).  Zhu et al. describe the successful 700 

transplantation of femoral-artery derived mitochondria into pulmonary artery endothelial and 701 

smooth muscle cells with subsequent reductions in hypoxia induced vasoconstriction. Though 702 

they had greater success with direct intracellular transplantation, they were also able to 703 

demonstrate the feasibility and efficacy of an intravenous method of mitochondrial 704 

delivery(191). Additionally, in a case series of pediatric patients requiring extracorporeal 705 

membrane oxygenation (ECMO) after myocardial dysfunction resulting from ischemia-706 

reperfusion injury, mitochondria were successfully autotransplanted from healthy skeletal 707 

muscles to diseased myocardium demonstrating safety in human patients(43). 708 

 709 

Other molecular approaches, such as targeting NOTCH3 signaling with DAPT (N-[N-(3,5-710 

difluorophenacetyl)- L-alanyl]-S-phenylglycine t-butyl ester), mTORC1/2 with rapamycin have 711 

shown promise in the treatment of PH(130), or SOD2 augmentation with DNA methylation 712 

inhibitors, or SOD mimetic therapy (MnTBAP)(10, 79),and augmentation of mtDNA repair 713 
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mechanisms such as hOgg1),(130),(10, 79),and augmentation are novel approaches targeting 714 

specific metabolic pathways that are promising.  715 

 716 

In terms of “reprogramming” mitochondria, we have already described the potential therapeutic 717 

role of epigenetic manipulation with the use of small non-coding RNA in the treatment or 718 

suppression of the PH phenotype in animal models. Further studies are actively pursuing 719 

applications in human models of disease, and have shown potential(21, 30, 129). 720 

 721 

Mitochondria play a number of important regulatory and homeostatic roles, particularly within 722 

the vasculature. As summarized, dysfunction of this complex system has been associated with 723 

many of the phenotypic changes expressed in PH. Through a better understanding of both the 724 

molecular pathways of this system, as well as the regulatory mechanisms of mitochondria 725 

themselves, we will have a more systematic and focused approach to the diagnosis and treatment 726 

of this heterogeneous and perplexing disease entity.   727 

 728 

 729 
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Figure 1: The potential mitochondrial derangements that may be present in pulmonary 1337 

hypertension are many and varied. This cartoon illustrates some of the areas where molecular or 1338 

targeted therapies are being explored. 1.) HIF-1-alpha pathway has been perhaps the most 1339 

explored metabolic pathway in pulmonary hypertension, and has both upstream and downstream 1340 

targets. 2.) HIF-1-alpha regulates expression of many genes. In this area, there have been 1341 

multiple non-coding RNA molecules with potential to alter downstream gene expression. 3.) 1342 

Upstream from HIF-1-alpha, regulation of appropriate redox signaling through augmentation of 1343 

redox enzyme SOD2 has proven effective in animal models. 4.) Calcium homeostasis is 1344 

necessary for preventing hyperpolarization of membrane potential, and subsequent glycolytic 1345 

transition. 5.) Small signaling molecules derived from injured mitochondrial may prevent 1346 

propagation of maladaptive phenotypes by attenuating pro-angiogenic and anti-apoptotic 1347 

responses. 1348 
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